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Abstract

Achieving carbon neutrality requires deploying renewable energy at unprecedented

speed and scale, yet countries sometimes implement policies that increase costs by

restricting the free flow of capital, talent, and innovation in favor of localizing benefits

such as economic growth, employment, and trade surpluses. Here we assess the cost

savings from a globalized solar photovoltaic (PV) module supply chain. We develop

a two-factor learning model using historical capacity, component, and input material

price data of solar PV deployment in the U.S., Germany, and China. We estimate that

the globalized PV module market has saved PV installers in the U.S. $24 ($19–$31)
billion, Germany $7 ($5–$9) billion, and China $36 ($26–$45) billion from 2008 to

2020 compared to a counterfactual scenario where domestic manufacturers supply an

increasing proportion of installed capacities over a 10-year period. Projecting the same

scenario forward from 2020 results in estimated solar module prices that are approx-

imately 20–30% higher in 2030 compared to a future with globalized supply chains.

International climate policy benefits from a globalized low-carbon value chain, and

these results point to the need for complementary policies to mitigate welfare distri-

bution effects and potential impacts on technological crowding-out.
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Main

Solar energy is promised to play a crucial role in achieving a sustainable, low-carbon energy

future and avoiding the worst impacts of climate change [1]. Over the past 40 years, solar

photovoltaic (PV) prices have fallen by over two orders of magnitude, and in the most recent

decade (2010-2020), the global weighted-average levelized cost of energy (LCOE) of newly

commissioned utility-scale solar PV fell by 85% [2], making solar PV cheaper than fossil

fuel power in some parts of the world. Installed costs (excluding cost of capital) fell by

81% over this period. While these dramatic price declines have been a boon for accelerating

low-carbon energy deployment [3], further declines will be necessary to deploy renewables

at the speed and scale that is needed to achieve climate targets, especially in the remaining

parts of the world where fossil fuel power is still cheaper [4]. Recent research suggests that

the rates of solar and wind energy deployment in even the fastest-deploying nations are not

high enough to meet targets necessary to avoid the worst consequences of climate change [5].

Nonetheless, rapid price declines in solar PV have not been without controversy. China,

for example, has played an outsized role in scaling up the mass production of solar PV

cells and modules, comprising 78% of global production in 2021 [6, 7] (see Figure 1). Greg

Nemet went as far as to call this outcome China’s “gift to the world” [8] referring to the

dramatic manufacturing cost reductions achieved by Chinese firms in the last decade [2].

Yet other nations view the concentration of PV manufacturing in China as a competitive

threat, and some have attributed this outcome to unfair trade practices and industrial policies

implemented by China’s government [9]. Countries seeking to capitalize on the growing clean

energy sector are looking to protect and grow domestic manufacturers [10].

In response to these concerns, the U.S. and the European Union have imposed steep solar

tariffs on imports from China and other countries. In June 2022, the Biden administration

invoked the Defense Production Act to accelerate the onshoring of solar PV manufacturing

[11]. These efforts could lead to less efficient national learning processes replacing the learn-

ing processes associated with global supply chains that have led to drastic price declines [12].
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Note: Over the past decade, solar PV cell and module production has increasingly been concentrated in
China.

Figure 1: Annual solar PV cell production by origin, 2010–2021 [6]

The free flow of capital (e.g., foreign finance-backed startups), talent (e.g., international col-

laborations with Chinese researchers), and innovations (e.g., technologies pioneered in labs

overseas and licensed and mass-produced in China) were essential to the rise of China’s com-

petitive solar PV industry [13]. Each of these activities is increasingly under scrutiny by the

U.S. and other governments [14]. In the event of strict nationalization policies (including,

inter alia, trade barriers in final or intermediate solar goods, restrictions on cross-national

R&D, and barriers to cross-border investment), subsequent cost and performance improve-

ments could derive primarily from activities, knowledge, and capital within national borders,

potentially slowing the rate of price declines in globally-traded solar PV components and,

consequently, the rate of solar PV deployment.
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International climate policy and renewable energy deployment policy now face a cross-

roads: continue relying on global supply chains, or pivot towards nationalization of technol-

ogy development and production. This study attempts to quantify the difference between

these two paths in terms of the costs of deploying solar PV to achieve ambitious low-carbon

goals. We collect detailed historical capacity, component, and input material cost data of

solar PV deployment in the U.S., Germany, and China and develop a two-factor learning

model to estimate a learning curve associated with the historical (globalized) solar PV sup-

ply chain. We then use these learning models to compare counterfactual historical prices

and potential future prices of solar PV modules under “global” versus “national” market

conditions. The global market scenarios reflect learning under historical market conditions

while the national market scenarios reflect a gradual transition to fully domestically-supplied

markets over a 10-year period in each country.

We focus our scope on PV modules for two reasons. First, modules are a globally-traded

component and comprise between 20% to 40% of the installed system cost for most PV

installations [15]; combined with inverters, modules comprised 61% of the global weighted-

average total installed price decline between 2010 and 2020 [2]. Second, other “soft costs”

(such as permitting, installation, and marketing) vary widely by country and have geograph-

ically limited learning and spillover effects [16]; as a result, we expect these cost components

to remain relatively similar regardless of where modules are manufactured. Our analysis is

limited to installed prices, not LCOE as reflected in power purchase prices for solar energy,

which also vary by country and project according to the cost of capital and other factors.

Modeling historical prices and savings

Using nation-specific, component-level price data and global PV installation and silicon price

data, we estimate learning rates for solar PV modules in the three largest solar deploying

countries (China, Germany, and the U.S.) between 2006 and 2020 using a two-factor learning
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model. Combined, these three markets comprised 54% of all global installed PV capacity

during this period [2]. Estimated learning rates during this period are 20% in Germany,

26% in the U.S., and 33% in China. We then compute the counterfactual “national mar-

kets” scenario by assuming that starting in 2006 countries began implementing nationalistic

policies that gradually restrict learning to installations within their country borders over a

ten year period (for China, the starting year is 2007 due to data availability). Annual in-

stalled capacities are assumed unchanged in the counterfactual “national markets” scenario

to provide the most policy-relevant results (see Methods Limitations). Figure 2 shows the

resulting price curves between the “global market” and “national market” scenarios in each

country as well as the true historical prices.

Note: Points are historical module prices, and the two solid lines reflect the modeled prices using global (blue)
versus national (orange) markets scenarios. In each modeled curve, the learning rates are held constant by
country and silicon prices follow historical global trends (Appendix Figure A6). The global market scenario
uses global capacities and the national market scenario uses a weighted sum of national and global capacities
that reflects a gradual transition to fully domestically-supplied markets over a 10-year period. Uncertainty
bands represent 95% confidence intervals from the estimated learning models, which were computed via
simulation.

Figure 2: Comparison of estimated solar PV module prices under global versus national
market scenarios in China (2007–2020) and Germany and the U.S. (2006–2020)

Comparing the two scenarios, if each country had pursued a gradual transition to strict

nationalistic policies while installing at the same rate over a ten year period, our results imply

that solar PV module prices in 2020 would have been significantly higher than their actual

historical prices: 54% higher in China ($387 versus $250 per kW), 83% in higher Germany
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($652 versus $357 per kW), and 107% higher in the U.S. ($877 versus $424 per kW). Early

learning, boosted in part by Germany’s generous solar feed-in-tariffs, led to compounded

improvements over time for the U.S. and China, which led to steep increases in installations

in the second half of the period. The combined estimated cumulative savings across all three

countries during this period from global versus national markets is $67 billion (2020 $USD),

with a 95% confidence interval of $50–$84 billion (see Figure 3).

Note: Savings are calculated by multiplying the installed national capacity in each year with the difference
between the modeled prices from the national and global markets scenarios. Error bars represent 95%
confidence intervals computed via simulation.

Figure 3: Estimated annual savings from deployed annual solar PV modules using global
versus national market scenarios in China, Germany, and the U.S. (2008–2020)

Future trajectories

As more countries introduce policies aimed at protecting local manufacturers, such as import

tariffs on PV modules, continued learning-based reductions in module prices may be delayed.

To assess this effect, we project solar PV module prices out to 2030 based on continued global

versus national market scenarios starting from historical 2020 PV prices. These projections

assume capacity grows at a constant annual growth rate (CAGR) from 2020 installed capacity

levels out to 2030 targets for each country. We consider two different future scenarios:

National Trends (NT), which projects recent deployment trends out to 2030, and Sustainable
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Development (SD), which reflects more aggressive installation growth to meet climate targets

based on the Sustainable Development Scenario in the IEA World Energy Outlook 2020 [4].

Table 1 summarizes the specific 2030 targets for each country in each scenario, and Figure

4 shows the results of these projections.

Table 1: Solar PV 2030 Installation Targets for Projection Scenarios

Country
National Trends(NT) Sustainable Development(SD)

2030 Target(GW) Implied CAGR 2030 Target(GW) Implied CAGR

U.S. 295 12% 411 16%

China 750 12% 1,106 17%

Germany 103 7% 147 11%

World 2,115 11% 3,125 16%

These projections imply that prices would be significantly higher in 2030 if strict nation-

alistic policies were gradually implemented in each country from 2020 to 2030. Under the

National Trends scenario, 2030 prices would be approximately 20% higher in each country:

$162 versus $135 (19% higher) per kW in China, $298 versus $251 (19% higher) per kW in

Germany, and $320 versus $262 (22% higher) per kW in the U.S. Under the Sustainable De-

velopment scenario, the differences in prices would be approximately 25–30% higher in each

country: $136 versus $108 (25% higher) per kW in China, $276 versus $221 (25% higher)

per kW in Germany, and $287 versus $221 (30% higher) per kW in the U.S. For compar-

ison, the U.S. National Renewable Energy Laboratory’s (NREL) 2021 Annual Technology

Baseline report predicts that solar PV modules will reach $170 and $320 / kW by 2030 in

advanced and conservative improvement scenarios, respectively [17]. Based on the projected

installed capacities, the estimated cumulative future savings from 2020 to 2030 across all

three countries from global versus national markets is $15 billion (2020 $USD) with a 95%

confidence interval of $13–$16 billion under the National Trends scenario, and $29 ($27–$32)

billion under the Sustainable Development scenario (Appendix Figure A1).
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Note: Projections assume constant annual growth rates in PV installations to achieve national and global
2030 installation targets. Each curve starts at historical 2020 module prices and follows a nation-specific
learning rate. In the global market scenarios, global projected installed capacities are used to project prices
whereas in the national market scenarios a weighted sum of national and global capacities is used that
reflects a gradual transition to fully domestically-supplied markets over a 10-year period. Uncertainty bands
represent 95% confidence intervals from the estimated learning models, which were computed via simulation.

Figure 4: Comparison of projected solar PV module prices (2020–2030) using global versus
national market scenarios in China, Germany, and the U.S.

Discussions

The manufacturing of solar PV modules – a globally-traded commodity crucial to addressing

climate change – is increasingly contested by governments seeking to localize benefits of the

current and future scale of the industry. Yet achieving the rapid rates of solar PV deployment

required to address climate change will necessarily require continued price declines at the

same or greater rates as those experienced during the past decade, a period during which

the free flow of global talent, capital, and innovations were instrumental to cost reductions.

In this paper, we contribute to understanding the implications of strict nationalistic policies

by assembling component-specific solar PV price data across major markets, establishing

national-level estimates of learning rates that incorporate silicon prices, and quantifying the
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potential impact of restricted national learning on historical and projected prices and savings

from solar PV deployment. The results may extend to other low-carbon technology sectors,

such as wind generating systems and electric vehicles, with caveats related to the supply

chain integration and complexity of technological components. Wind generating systems, for

example, have a very globally-integrated and specialized trade in intermediate components

[18]; as a result, achieving “national markets” for the entire wind supply chain could lead to

even larger disruptions in terms of costs and reduced learning.

We identify three dilemmas facing policy-makers in preserving established globalized

supply chains: trade disputes and domestic employment, “crowding-out” of alternative tech-

nology pathways, and additional benefits and drivers of domestic sourcing. Resolving these

through complementary policies that mitigate impacts on global learning are difficult but

important tasks moving forward.

Trade disputes and domestic employment. Some have attributed the concentration

of PV manufacturing in China to unfair trade practices and industrial policies implemented

by China’s government [9]. While constant cost multipliers would be absorbed in the national

learning rates, we do not attempt to disaggregate the contributions to these rates nor do we

account for changes in national-level producer subsidies or tariffs faced by importers. The

“learning curve” is a synthetic indicator that captures the cumulative effect of impacting

factors on the cost evolution of a technology. Data limitations of time-varying government

subsidies, industrial policies, tariffs, and firm relocations prevent us from disaggregating

these precise effects on price and are beyond the scope of this study.

The loss of potential manufacturing jobs in importing countries coupled with trade dis-

putes is prompting much of the impetus for nationalistic policies. NREL estimates that

there are ten times more annual jobs in system installation compared to those in the en-

tire manufacturing supply chain (though within manufacturing, solar module production is

the most labor intensive per GW)[19]. Hence, if higher prices associated with nationalis-

tic policies result in less deployment, total employment may decline, though there may be
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other redistributive concerns and political realities shaping preferences for certain types of

jobs [20]. Our national markets counterfactual scenario is an illustrative example of more

extreme decoupling, though because of the difficulty of onshoring, countries may instead opt

to “near-shore” production to a subset of countries or onshore only select parts of the supply

chain. Even the three countries studied could not costlessly onshore entire supply chains,

hence our results likely represent an underestimate of the future costs of strict onshoring

policies. Reciprocity in trade policies is another barrier limiting the extent to which nations

can fulfill onshoring policy goals: for example, the U.S. polysilicon industry was once a dom-

inant global supplier to solar PV manufacturers but became the first casualty of the solar

trade war between China and the U.S. when China retaliated for tariffs on imported Chinese

modules.

Technological “crowding-out”. Some have argued that the rapid price declines of

monocrystalline silicon (c-Si) PV cells, driven in part by Chinese industrial policies to ramp

up production in China, might have “crowded out” other emerging solar technologies, such as

“thin film” solar cells for which the U.S. has a sizable global market share and that could have

achieved even lower prices without fierce competition from c-Si [21, 22]. Such an argument

is not without precedent. For example, Fuchs and Kirchain (2010) found that offshoring

manufacturing in the optoelectronics industry to developing East Asia led to such significant

price reductions in the incumbent technology that emerging and potentially groundbreaking

technologies could not compete and were largely abandoned [23].

While these concerns are not without merit, they are not necessarily the only forces at

play in the global PV industry. Indeed, PV cell and module manufacturing has followed a

developmental path common to many industries in which initial, intense experimentation

is followed by the emergence of a “dominant design” [24] and a shift in productive activ-

ity away from product innovations and towards production improvements to increase scale

and reduce costs [25–28]. This shift in focus towards production tends to precipitate two

related phenomena: 1) unit costs drop dramatically as firms identify successful production
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innovations, and 2) many competing firms fail as production tends to concentrate around

the handful of firms that are able to compete on lower costs. In some industries, this also

coincides with offshoring production in search of lower cost production environments, though

this is not always the case [10]. Thus, it remains unclear whether the concentration of PV

cell and module production in China was purely a result of government intervention or per-

haps a combination of factors, such as the natural evolution of a maturing industry [29].

Chinese policies may have accelerated cost declines in c-Si cells and modules, but whether

they alone led to the crowding out of other potential technologies remains debatable. Addi-

tional domestic sourcing drivers. A domestic manufacturing base in solar PV may provide

other benefits besides direct employment worthy of future study. Our model does not incor-

porate any spill-over benefits to adjacent industries, such as semiconductors and electronics.

For example, polysilicon production is part of both advanced chip and solar supply chains,

though solar-grade polysilicon has purity requirements several orders of magnitude lower

[30]. Establishing a stronger link between public funding of R&D and the private sector

has been identified as important to achieving climate technology innovation goals, both by

reducing risks of scale-up and providing access to markets [31]. Foreign manufacturers may

be undesirable or infeasible partners with public money. On the other hand, private sector-

led efforts can be effective internationally: Chinese solar firms largely innovated through

improved manufacturing processes and strategic international partnerships, including with

U.S.-based startups unable to scale domestically [32].

Finally, maintaining adequate environmental, health and labor standards in the produc-

tion of traded goods is important for ethical reasons and is increasingly raised in the context

of maintaining a level-playing field in trade agreements. The Xinjiang region of China, where

much of the world’s solar-grade polysilicon is produced, has come under increased scrutiny

due to allegations of forced labor. The solar industry has responded with proposed trace-

ability protocols, which if effective could obviate the need to onshore production for ethical

reasons [33]. Further work is needed on the feasibility of such protocols.
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This study presents the first quantitative estimation of the historical and future cost

savings from a globalized solar PV supply chain. The results provide evidence of the bene-

fits of global learning processes in terms of achieving lower prices to accelerate low-carbon

technology deployment, which could potentially be delayed by emerging nationalistic pol-

icy efforts. When negotiators meet to discuss accelerating action towards the goals of the

Paris Agreement, and when policy-makers plan for pathways to achieve mid-century carbon

neutrality, they should recognize that these aspirations may be difficult or impossible to

achieve without globalized low-carbon supply chains. Complementary policies are necessary

to address dilemmas and debates with respect to localizing manufacturing and to ensure

continued price declines.

Methods

Learning models and simulations. The learning curve model is widely used to describe

the evolution of production costs for technologies as they scale up [34–38]. In its simplest

form, the learning curve defines a relationship in log-log space between cost (or price) and

cumulative capacity [39]. The model can be expanded to incorporate not only the processes

of “learning-by-doing,” but “learning-by-researching” and changes in material input prices

as well [40, 41]. Here, we adopt a two-factor learning model relating the unit price in year

t and country i of solar PV modules, pit, to the cumulative installed PV capacity in year t,

qt, and globally-averaged polysilicon prices in year t, st, (the primary input material to PV

modules):

ln pit = lnαi + βi ln qt + γi ln st (1)

Here, αi is a constant related to the starting year conditions in country i, γi measures

the sensitivity to polysilicon prices, and βi is the learning coefficient in country i, which is
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related to the learning rate (Li) via:

Li = 1− 2βi (2)

For each country, i, we estimate learning coefficients (Appendix Table A1), βi, under

historical “global market” conditions using linear least-squares regression on Equation 1.

These learning models set a baseline for learning rates under historical market conditions

and assume that variations in country-level module pricing were due to transportation, ad-

ministrative, and other non-learning costs.

We then construct counterfactual “national market” scenarios by assuming that the

learning-related price decreases in country i from the starting year, t0, are derived from

incrementally more nationally-installed PV capacity:

qt − q(t−1) = (qit − qi(t−1)) + (1− λi)(qjt − qj(t−1)) (3)

where qit is the cumulative installed capacity in country i in year t, qjt is the cumulative

installed capacity in all other countries in year t, and λt is a value ranging from 0 to 1.

This defines a scenario whereby incremental capacity installed in each year increasingly

comes from national as opposed to global installations as λt shifts from 0 to 1. In our

baseline simulations, λt ranges from 0.1 to 1.0 in increments of 0.1 as t goes from 1 to

10, simulating a gradual transition to a scenario where all new national PV capacity is

domestically-supplied. At the starting year of both the historical and projection scenarios,

λt = 0 and the cumulative capacity is set to the globally installed capacity in that year.

Unit price declines under national market conditions thus evolve more slowly according to

how rapidly λt approaches 1. The national market scenarios propose that national-specific

learning is proportionally derived from national versus global cumulative installed capacities,

and by definition qit < qt. Extended Data Figure 5 illustrates the relationship between λit

and the proportion of national to global cumulative installed capacity over all years for each
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country. Note that the same value of λi does not translate to the same proportion of national

learning for each country. For example, if λi = 0.4, then the proportion of national learning

is 15% in the U.S., 44% in China, and 40% in Germany.

Uncertainty in parameter estimates is propagated throughout all of our analyses using

multivariate normal draws from the full covariance matrix of model parameters. Lower and

upper bounds on results reflect a 95% confidence interval taken from the 2.5% and 97.5%

percentiles from these draws.

Limitations. Learning rate analyses, while widely used, are subject to critiques in terms

of under-specifying learning mechanisms [36, 42, 43]. In our application of these models, we

include exogenous factors that could influence module prices but are not directly linked to

learning (e.g., polysilicon prices). Otherwise, we estimate a single learning coefficient for

each country that captures the average learning due to a variety of nation-specific factors

that contribute to learning, such as learning by doing (average plant size), and learning by

searching (research, and development), etc. While other studies have estimated learning

models that attempt to disaggregate learning into constituent components [44], our research

focuses on the nation-specific price implications of trade barriers. Data gaps and insufficient

observations preclude explaining the contributing factors to learning in each country. This

introduces potential biases if learning mechanisms are differentially affected by globalization.

Given the concentration of PV panel manufacturing in China, it is possible that a portion

of the learning in China was due to achieving higher economies of scale than manufacturers

in the U.S. and Germany. If so, then the savings reported from the differences in the global

versus national market scenarios may be overestimated, assuming that U.S. and German

manufacturers would have achieved similar economies of scale in a counterfactual scenario

where national producers meet domestic demand. Three alternative models were estimated

to disaggregate module production, installation capacity, and average plant size. Those

results are shown in Appendix Tables A2, A3, and A4. Improving ease of access to credit for

solar projects, as reflected in declining trends in weighted-average cost of capital (WACC),
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has and will continue to have a large impact on reducing power purchase prices for solar [45].

Therefore, restrictions in capital flows following from nationalistic policies could lead to

even larger costs on developers. Finally, the specific outcomes in terms of estimating savings

from global versus national market scenarios are sensitive to simulation parameters, such as

the number of years until all national capacity is domestically supplied. These parameters

can be varied and the outcomes compared using an open source application available at

https://jhelvy.shinyapps.io/solar-learning-2021/.

Data availability

We compile a comprehensive dataset of historical solar capacity and component price glob-

ally and in the U.S., China, and Germany. All code and data are publicly available on

Github at https://github.com/jhelvy/solar-learning-2021. Global installed PV ca-

pacity and price data are from the open database of the International Renewable Energy

Agency (IRENA)[2] (https://www.irena.org/statistics). In the U.S, solar capacity

data are from the Solar Energy Industries Association (SEIA) [46], and module prices are

assembled from two sources: the Lawrence Berkeley National Laboratory (LBNL) [47] and

the National Renewable Energy Laboratory (NREL)[15]. The LBNL data are used for the

2006–2018 period since this series ends in 2018, and the NREL data are used for 2019–2020

to extend the series to 2020. This was chosen because the NREL data only start in 2010,

and thus the LBNL series covers a broader range (Appendix Figures A2, A3, A4). For

China, both the installed capacity and module price data (2007–2018) were extracted from

reports and presentations by the Energy Research Institute (ERI) [48], and the 2019–2020

data were extracted from China Photovoltaic Industry Association where the historical data

are identical to that of ERI [49]. For Germany, capacity data are from IRENA, and module

price data were extracted from Fraunhofer ISE [50]. All prices are in $2020 USD, and we

adopt inflation adjustments using IMF (https://data.imf.org/) and exchange rates from
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the Federal Reserve Bank (https://www.federalreserve.gov/releases/h10/hist/).

Code availability

All of the raw data as well as the code used to process the data and produce all analyses and

figures are publicly available on Github at https://github.com/jhelvy/solar-learning-2021.
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Appendix

Table A1: Estimated learning model coefficients

United States China Germany

(Intercept) 15 (1.04)*** 18 (1.58)*** 12 (0.96)***
log(cum capacity kw) -0.44 (0.045)*** -0.57 (0.070)*** -0.33 (0.042)***

log(price si) 0.15 (0.058)* 0.23 (0.079) 0.21 (0.054)
*p<0.05; **p<0.01; ***p<0.001

Table A2: Estimated learning model coefficients from alternative model 1, which includes
an additional covariate for cumulative national module production capacity

United States China Germany

(Intercept) 16 (2.47)*** 15 (4.89)* 18 (2.28)***
log(cum installed kw) -0.23 (0.347) 0.04 (0.906) -0.14 (0.103)

log(cum production kw) -0.35 (0.505)) -0.42 (0.686) -0.52 (0.203)*
log(price si) 0.05 (0.146) 0.21 (0.216) 0.02 (0.105)

*p<0.05; **p<0.01; ***p<0.001
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Table A3: Estimated learning model coefficients from alternative model 2, which includes
an additional covariate for cumulative national installed capacity

United States China Germany

(Intercept) 15 (1.08)*** 19 (2.09)*** 15 (2.14)***
log(cum installed kw) -0.41 (0.073)*** -0.60 (0.166)** -0.26 (0.063)**
log(cum installed kw i) -0.04 (0.077) 0.03 (0.103) -0.21 (0.157)

log(price si) 0.16 (0.064)* 0.18 (0.117) 0.16 (0.063)*
*p<0.05; **p<0.01; ***p<0.001

Table A4: Estimated learning model coefficients from alternative model 3, which includes
an additional covariate for global average plant size

United States China Germany

(Intercept) 15 (1.57)*** 17 (2.25)*** 13 (1.60)***
log(cum installed kw) -0.32 (0.150) -0.37 (0.216) -0.49 (0.153)*
log(ave plant size kw) -0.22 (0.166) -0.22 (0.239) 0.19 (0.170)

log(price si) 0.20 (0.140) 0.38 (0.201) 0.09 (0.143)
*p<0.05; **p<0.01; ***p<0.001
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Figure A1: Comparison of projected annual savings (2020 - 2030) using global versus national
market scenarios in China, Germany, and the U.S.

Figure A2: Comparison of the U.S. installed solar PV capacity by type and data source
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Figure A3: Comparison of the U.S. cumulative installed solar PV capacity by data source

Figure A4: Comparison of the U.S. solar PV module prices by data source
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Figure A5: Relationship between λ and the proportion of national to global cumulative
installed capacity (2006 - 2020)

Figure A6: Historical global silicon prices (1980–2020)
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Author Correction

In the version of this article initially published, the projected 2030 solar PV capacity of

the United States in the sustainable development scenario in Table 1, now reading as 411

GW, mistakenly stated 628 GW. Furthermore, the implied CAGR (%), now shown as 16,

was originally written as 21. These revisions changed the projected 2030 prices in Fig. 4

for the United States under the sustainable development scenario in the national market

(orange line) from US$276 per kW (25% higher than with global market) to US$287 per kW

(30% higher than with global market). In addition, the cumulative savings of the United

States from 2020 to 2030 in the sustainable development scenario in Extended Data Fig.

1 has been corrected to US$12 (11–13) billion from US$18 (17–20) billion. Text related to

these data have also been updated to reflect the changes. In the second-to-last sentence of

the Abstract, “20–25 per cent” now reads as “20–30 per cent”. In the sentence beginning

“Under the sustainable development. . . ” in the second paragraph of the ‘Future trajectories’

subsection, “25%” has been replaced with “25–30%” and “US$276.2 per kW versus US$221.3

per kW in the United States” now reads as “US$287.2 per kW versus US$221.3 per kW in the

United States”. In the last sentence of this paragraph, “US$36 (33–39)” has been updated

to “US$29 (27–32)”.

The projected global market size is directly cited from IEA World Energy Outlook 2020

Sustainable Development Scenario projection, not summarized from independent country

sizes, and is therefore not affected by the proposed revisions. The errors have been corrected

in the HTML and PDF versions of the article.

The authors thank Yiting Xu and Dr Jing Meng at University College London for iden-

tifying this data point error. For transparency, both the original and revised versions of

Table 1, Fig. 4, Extended Data Fig. 1, and text from the Abstract and ‘Future trajectories’

subsection are outlined in the Supplementary Information attached to this notice.
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Supplementary Information

Original Table 1

Country
National Trends(NT) Sustainable Development(SD)

2030 Target(GW) Implied CAGR 2030 Target(GW) Implied CAGR

U.S. 295 12% 628 22%

China 750 12% 1,106 17%

Germany 103 7% 147 11%

World 2,115 11% 3,125 16%

Updated Table 1

Country
National Trends(NT) Sustainable Development(SD)

2030 Target(GW) Implied CAGR 2030 Target(GW) Implied CAGR

U.S. 295 12% 411 16%

China 750 12% 1,106 17%

Germany 103 7% 147 11%

World 2,115 11% 3,125 16%
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Original Figure 4

Updated Figure 4
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Original Texts

Summary/Abstract
. . . . . . Projecting the same scenario forwards from 2020 results in estimated solar module

prices that are approximately 20–25 per cent higher in 2030 compared with a future with
globalized supply chains. . . . . . .

Future projections
. . . . . . Under the sustainable development scenario, the differences in prices would be

approximately 25% higher in each country: US$136 per kW versus US$108 per kW in
China, US$276.2 per kW versus US$220.9 per kW in Germany, and US$276.2 per kW ver-
sus US$221.3 per kW in the United States. . . . . . . On the basis of the projected installed
capacities, the estimated cumulative future savings from 2020 to 2030 across all three coun-
tries from global versus national markets is US$15 billion (2020 $US) with a 95% confidence
interval of US$13–16 billion under the national trends scenario, and US$36 (33–39) billion
under the sustainable development scenario (Extended Data Fig. 1).

Updated Texts

Summary/Abstract
. . . . . . Projecting the same scenario forwards from 2020 results in estimated solar module

prices that are approximately 20–30 per cent higher in 2030 compared with a future with
globalized supply chains. . . . . . .

Future projections
. . . . . . Under the sustainable development scenario, the differences in prices would be

approximately 25-30% higher in each country: US$136 per kW versus US$108 per kW in
China, US$276.2 per kW versus US$220.9 per kW in Germany, and US$287.2 per kW ver-
sus US$221.3 per kW in the United States. . . . . . . On the basis of the projected installed
capacities, the estimated cumulative future savings from 2020 to 2030 across all three coun-
tries from global versus national markets is US$15 billion (2020 $US) with a 95% confidence
interval of US$13–16 billion under the national trends scenario, and US$29 (27–32) billion
under the sustainable development scenario (Extended Data Fig. 1).
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