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a b s t r a c t

We investigated the applications of artificial intelligence (AI) algorithms in wind power technology
changes over time and found that AI accelerates the automation of wind power systems. This study
shows evidence of the evolution of wind technology innovation following the advancement in AI al-
gorithms using the patents data issued in four intellectual property (IP) offices from 1980 through 2017.
Artificial intelligence and more advanced data analytics can be effectively applied to increase the effi-
ciency of wind power systems and to optimize wind farm operations. This study empirically analyzes the
evolution of applications of AI algorithms in wind power technology by employing machine learning-
based text mining and network analysis, demonstrating the dynamic changing pattern of applications
of AI algorithms in wind power technology innovation.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Wind energy as a clean and renewable source is widely accepted
(Sun et al., 2020) since it is playing an increasing role in reducing
greenhouse gas emissions and leading the transition from a fossil
fuel-based energy system to a sustainable energy system. Wind
energy is considered a promising alternative to conventional fossil
fuels and plays an important role in reducing global carbon foot-
print and (Wang et al., 2018; Dai et al., 2019). Wind turbine
installation globally has increased sharply from 24 GW in 2001 to
around 651 GW in 2019, which is almost 27 times increased (Global
Wind Energy Council, 2020b). The newly installed wind energy
capacity reached 60.4 GW in 2019, which marks the largest year in
the wind industry history, and the newly installed capacity is ex-
pected to reach 76 GW in 2020 (Global Wind Energy Council,
2020a). This remarkable growth has been possible due to techno-
logical innovation and a reduction in the costs associatedwith wind
power systems. However, because of the intermittent electricity
generation from wind, increasing the use of electricity from wind
ee), gang.he@stonybrook.edu
power and integrating wind systems into power systems bring
challenges for the stability, safety, and flexibility of the power
system (Evan et al., 2012). Thus, there is increasing attention on
controlling and optimizing the performance of wind turbines (Wu
et al., 2014; Wang et al., 2020). To expand wind power generation
on a large scale, optimizing wind turbine control, operating wind
power systems effectively, forecasting wind speed, andwind power
generation are crucial. Zhang and Huang (2018) and Ozcanli et al.
(2020) argue that artificial intelligence (AI) and data analysis are
needed to be applied to wind power systems to increase the per-
formance of wind power.

In recent years, more wind power has been integrated into the
power system along with other renewable resources, energy stor-
age systems, and electric vehicle charging systems (Zahraee et al.,
2016; Yoldas et al., 2017). As wind energy is a variable renewable
energy source, wind turbines are not always driven at rated ca-
pacity. Wind turbine producers and manufacturers have sought
advanced technologies such as automation, data analysis, robots,
artificial intelligence, and machine learning for efficient operation
and maintenance (O&M) to minimize manufacturing and O&M
costs and optimize wind power generation systems (Stetco et al.,
2019). AI predicts wind power generation and power demand
and enables smart grids to store and transmit power efficiently
(Flores et al., 2005; Barbounis et al., 2006; Bilgili et al., 2007; Jursa
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and Rohrig, 2008; Mabel and Fernandez, 2008). Machine learning
aims to develop methods and algorithms to learn from data
(Mitchell, 1997; Alpaydin, 2009). Themachine learning algorithm is
used to describe the behavior of the data set, model input function,
expected output and expected output function in relation to the
recording. Machine learning algorithms are one of the alternatives
to predict wind power based on wind speed data. International
Renewable Energy Agency (2019) addresses that innovation in AI
and machine learning can improve wind power operations by up to
10 percent by utilizing vast amounts of data and real-time data. AI-
based wind turbine technology enables efficient O&M through data
analysis. Previous studies (Barambones et al., 2010; Ren and Bao,
2010; Mesemanolis et al., 2012) highlighted that AI technology
can detect anomalies early through predictive analysis and can
operate smoothly under wind conditions to improve turbine per-
formance. Wind speed prediction can improve the efficiency of
wind power systems (Lei et al., 2009) and the operation and
maintenance of wind control systems (Li and Shi 2010). Wind po-
wer prediction is essential to manage wind power generation due
to its intermittence and variability (Qerimi et al., 2020). Colak et al.
(2012) addressed that AI can be used for turbine control, power
system management, load tracking, and maintenance of wind
farms. It is difficult to statistically and mathematically model wind
power systems due to complicated architecture and limited
knowledge. Wang et al. (2020) argue that traditional methodolo-
gies cannot guarantee the best solutions. Hong and Rioflorido
(2019) and Lin and Liu (2020) demonstrated that Artificial Neural
Network (ANN) could better predict wind power while the physical
methods in predicting wind power are too complicated to be
explained. Thus, AI can better optimize problems via innovative
approaches. Jha et al. (2017) reviewed the current status of research
and development of AI approach in renewable systems, including
wind and summarized the reports for the application of AI tech-
niques in wind energy, distinguishing wind power prediction and
wind speed prediction. The authors presented the application of AI
techniques in the optimization of wind systems. However, they did
not demonstrate the dynamic change of AI application in wind
power technology overtime.

Policy decision-makers need to analyze new and innovative
technologies and develop research and development plans
regarding renewable energy sources (Borowski, 2020). As AI tech-
nology emerges as a critical factor in determining the competi-
tiveness of renewable energy technology, countries and companies
are actively pursuing R&D and patent applications for AI technol-
ogy and the energy technology converging AI technology
(Cockburn et al., 2017; Fuji and Magani, 2018). Although it is not a
field of wind technology innovation, with stressing the importance
of the future direction of recent advances of technologies, Qi et al.
(2018) provided insights of technological innovation into the
recent advances in emerging 2D metal-halide perovskites and their
applications in the fields of optoelectronics and photonics. Patent
data provide a variety of valuable information that can demonstrate
the evolution of technologies over time (Pilkingtonet et al., 2002).
Altuntas et al. (2015) stressed that the patent contains detailed
information about developed technologies and is of great signifi-
cance in identifying past, present, and future technology trends.
There have been researches using patent data to identify the evo-
lution of artificial intelligence technology (Tseng and Ting, 2013)
and renewable energy technology (Albino et al., 2014; Bointner,
2014), respectively. Previous studies have analyzed AI technology
structure and technology trends by utilizing patent data, but there
are limitations in these studies as they distinguished and analyzed
patent data results based on predefined AI structures. Meanwhile,
recently, there has been increasing interest in research on the
convergence of AI with other areas. Since the International Patent
2

Classification (IPC) code is assigned to all of each patent, and
different classification codes are assigned to the patented tech-
nology, network analysis between these patents can be used to
identify which technologies are converging with other fields have.
Kim and Kim (2012) demonstrated the results of the analysis of the
fields that appear simultaneously with AI technology - data pro-
cessing, image analysis, and financial pricing - based on USPC
granted to U.S. patents. They identified the technology convergence
phenomenon in AI technology through patents and papers.
Through the co-occurrence analysis with the AI technology using
USPC Class 706 class, they found a strong technological conver-
gence in data processing, image analysis, and financial pricing. Fujii
and Managi (2018) used registered patent data from 2000 to 2016
to identify trends in AI technologies and changes in priorities.
Employing a patent decomposition analysis framework, they
divided AI technologies into four types-biological-based models,
knowledge-based models, specific physical models, and other AI
technologies.

Despite these previous studies, there are only limited studies
that presented the changes in applications of AI algorithms in wind
power technologies over time through patent data analysis. This
study empirically analyzes the dynamic pattern of changes of AI
application on wind power technology innovation during
1980e2017 by applying text mining and International Patent
Classification (IPC) co-occurrence network analysis utilizing patent
data documents. This study classifies AI algorithms and then
searches patents to analyze the changes of applications of AI al-
gorithms on wind power technology over time to explore answers
to the following research questions. i) How the application of AI
algorithms onwind power technology innovation has changed over
time? ii) What are the main characteristics of each period, iii) How
the pattern of convergence of AI and wind power technology has
been changed over time?

The novelty and contribution of this study to previous studies lie
in the following two aspects:

(i) In the context of the application of AI in wind power tech-
nology, as artificial intelligence is expected to improve the
performance of wind power and power systems, based on
real data and evidence, research and development (R&D)
investment policies and appropriate policy combinations for
wind power and artificial intelligence innovation should be
established. Understanding the impact of AI on wind power
innovation and understanding the patterns of convergence
effects on technological innovation over the past decades can
help predict future technology trajectories. In this regard, it is
the first time to identify the changes of applications of AI
algorithms in wind power technology overtime for 38 years
from 1980 to 2017 through the collected patents for wind
power technology using AI algorithm technique issued by
four Patent Offices-USPTO, EPO, JPO, and CNIPA (United
States Patent and Trademark Office, European Patent Office,
Japanese Patent Office, and China National Intellectual
Property Administration, respectively).

(ii) In the context of patterns of wind power technology inno-
vation evolved with AI techniques, this is the first study to
analyze the convergence pattern of AI technology and wind
technology by period, by visualizing the results of patent
data analysis using t-SNE algorithm, a machine learning-
based technique, and IPC co-occurrence network analysis
method that can analyze technology convergence.

The remainder of this paper is organized as follows. Section 2
gives a brief introduction to artificial intelligence algorithms and
its’ application in wind power. In Section 3, the methodology and
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the process of data analysis are reported. Section 4 highlight the
results and discussion. Section 5 comes to a conclusion.
2. Literature review

2.1. The concept of artificial intelligence

It is becoming increasingly difficult to ignore the effects of AI in
analyzing wind power technology innovation. The concepts of
artificial intelligence (AI), machine learning (ML), and deep
learning (DL) are often used interchangeably, and all three are
closely related, but are certainly not the same. Therefore, it is
necessary to accurately understand the differences between arti-
ficial intelligence, machine learning, and deep learning. Lee (2020)
presented their relationship and characteristics of each technique
with representative algorithms (Fig. 1.).

Alan Turing is the first person to raise the subject of AI. In 1937,
after proposing the concept of a universal machine, in 1950, Turing
presented his artificial intelligence issue for the first time in his
thesis ‘Computing Machinery and Intelligence’ (Negnevitsky, 2011).
Turing is a test to determine whether it is a machine or a person.
The test passes if the human judge cannot tell whether the person
talking to the judge was a person or a machine after a human judge
had a random conversation with one person and one machine. The
term artificial intelligence was first mentioned by John Macarthy at
the Artificial Intelligence Conference held in Dartmouth in 1956. AI
is defined in many ways according to experts’ views. Russell and
Norvig (2011) define AI as an intelligent agent that thinks and be-
haves like a person and argue that it is a generic term for machines
capable of perception, logic, and learning. Researchers believe that
since the advent of AI in the 1950s, it has had a cycle of boom and
fall twice (Mitchell, 1997; Smola and Vishwanathan, 2008;
Harrington, 2012; Marsland, 2015; Odaka, 2016; Tada, 2016). Since
understanding the technological development of AI by periods al-
lows us to understand the characteristics of each algorithm and to
figure out how it has been applied, this section analyzes how AI
technology has evolved.
Fig. 1. Classification of artificial intelligence, machine lear

3

2.1.1. The evolution of artificial intelligence

2.1.1.1. [1960e1980] 1st AI boom. In the 1970s, the first boom of AI
occurred as the Expert System, which systematically accumulated
professional knowledge and made professional decisions, was
developed (Tada, 2016). Minsky designed the Expert System with
artificial intelligence based on the theory of symbolism (Tada,
2016). Unlike neural network models, the expert system does not
have self-learning systems. Instead, it is based on the expertise of a
field and judges it as ‘Do not do this or do it in this situation.’ The
expert system extracts the knowledge of human experts and bor-
rows knowledge expressing techniques from logic, etc., and re-
constructs information and knowledge in a form that the computer
understands; this is called the knowledge base (Russell and Norvig,
2011). The fuzzy theory used in mathematics is critical when expert
systems make judgments (Russell and Norvig, 2011). By the 1970s,
While Rosenblatt’s simple perceptron model had fallen in popu-
larity, the Expert system continued to evolve and popularize it for
use on personal computers in by 1980s (Negnevitsky, 2011). Per-
ceptron is a pattern recognition algorithm using simple perceptron,
published by Rosenblatt in 1957 and is a two-layered learning
computer network that performs simple addition and subtraction
(Russell and Norvig, 2011). Negnevitsky (2011) points out that the
expert system has inherent limitations in that it can imitate intel-
lectual abilities only at the level of human experts in narrow and
specialized fields, which is not enough to handle the vast and
complex social domain. However, as the expert system failed to
solve the target problem, interest in the expert system has reduced.
The field of AI that has been actively researched so far is the systems
that behave like humans’, examples of which include natural lan-
guage processing, automatic reasoning, knowledge expression,
speech recognition, machine learning, computer vision, and ro-
botics (Negnevitsky, 2011). Fuzzy systems and expert systems are AI
algorithms that are widely used until recently (Dangeti, 2017).
Fuzzy theory is a theory that attempts to express ambiguous hu-
man language in computer language, and is a logic dealing with
ambiguous objects. It is mainly used in the field of control of pro-
duction facilities and pattern recognition such as text recognition
ning, and deep learning. Reprinted from Lee (2020).
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and voice recognition.

2.1.1.2. [1980e2000] 2nd AI boom and AI winter. In the 1980s,
semiconductor development costs were lowered, enabling large-
scale integrated circuits with increased CPU, RAM, and cache
memory capacity. These advancements changed the unit of data
and speeded up the operation speed. Previous researches (Smola
and Vishwanathan, 2008; Harrington, 2012; Odaka, 2016; Tada,
2016) argue that in this period, neural network research was
developed with multi-layer perceptron and error-back propagation
method, occurring a second AI boom. However, the computational
performance of the 1980s has reached the limit that it is difficult to
broaden the scope of thinking, and AI research in the 1990s met the
dark period (Odaka, 2016).

2.1.1.3. [2000e2010] statistics based machine learning and develop-
ment of distributed computing. AI research includes a neural
network and a machine learning algorithm based on statistical
modeling. In the 2000s, machine learning based on statistics was
developed and distributed computing that improves computing
performance also developed (Tada, 2016). With the development of
the Internet and the adoption of information and communication
devices, it has become possible to utilize Big Data, and computers
have also been developed so that high-performance computation
processing technology can be practically used. The high volume of
data and advanced computing has supported the evolution of AI.

2.1.1.4. [2011-Present] emergence of deep learning and the prevalence
of AI and digital transformation. After deep learning won the 2012
ImageNet Challenge competitionwith overwhelming performance,
algorithms such as DNN/CNN/RNN have developed rapidly and
have begun to be utilized in the industry. Since deep learning have
emerged and machine learning applied widely after 2011, AI has
been regarded to have the potential to transform society and hu-
manity as a revolutionary technology, and its growth has been
apparent. Google is one of the most successful companies in
developing deep learning. By acquiring DeepMind, a British deep-
learning company, it succeeded in learning computers in 2012
and recognizing cats. This was achieved by using various hybrid
algorithms and by utilizing 16,000 computer processors and ten
million YouTube videos (Hof, 2015). In 2016, Google was able to
reduce the energy used to cool the data center by 40% by using
DeepMind’s machine learning algorithm (Evans and Gao, 2016).

2.1.2. Machine learning
Machine learning is a subset of AI and can be learned without

being explicitly programmed. Machine learning can be classified
into four categories (Marsland, 2015). Supervised, unsupervised,
reinforced and evolved learning. Supervised learning is the most
commonmachine learning technique (Marsland, 2015). Supervised
learning provides a training set and target values, and generalizes
to give correct answers for all input values through the data set
provided. Supervised learning provides training sets and target
values, and generalizes them so that the correct answers are given
out for all input values through the provided data set. Once the
training finishes with the training set, it can be measured how
accurately the learned algorithm predicts, using an unspecified test
set. There are classification and prediction models in supervised
learning. Support Vector Machine (SVM) is the most commonly
used supervised learning model (Smola and Vishwanathan, 2008;
Harrington, 2012). SVM is an identification method that identifies
two groups, and it is a method to find a hyperplane with the
maximum margin among the many candidate planes that can
separate the two groups. SVM is used when the data to be trained
classified into two groups, and it is amodel for predictingwhere the
4

new datawill belong to the existing two. Unsupervised learning is a
methodology inwhich the learning data does not have a label, and a
computer learns without labeling the data. Unsupervised learning
is used to discover hidden features or structures of data. Clustering
and dimension reduction are the representative methodology of
unsupervised learning (Marsland, 2015; Dangeti, 2017). Rein-
forcement learning is an intermediate technique between super-
vised learning and unsupervised learning and is an algorithm that
includes data collection in a dynamic environment (Mitchell, 1997).
Reinforcement learning is an intermediate technique between su-
pervised learning and unsupervised learning (Harrington, 2012).
Mitchell (1997) defines that reinforcement learning is an algorithm
that includes data collection in a dynamic environment, and he
explains that the agent proceeds to learn by taking action for a
given ‘state’ and obtaining some reward from it; at this point, the
agent proceeds to maximize the reward. Representative algorithms
for reinforcement learning are Q-Learning, and recently, Q-
Learning has been combined with deep learning and used as a
Deep-Q-Network (DQN) method (Tada, 2016).

Evolutionary learning is a machine learning method that ac-
quires knowledge by mimicking the evolution of living things
(Tada, 2016). It is a learning method that implements the principle
of inheritance of living things according to symbol processing
(Odaka, 2016). Evolutionary learning has the same belief that
learning and intelligence are the same, as nature develops by using
natural selection and mutation tools. Typical examples are the
genetic algorithm, which uses the characteristics of biological
evolution for learning, Particle Swarm Optimization (PSO) and Ant
Colony Optimization, which imitate clusters of organisms (Odaka,
2016). Odaka (2016) describes that the genetic algorithm models
are the crossover phenomenon where genes are mutually inter-
twined and mutations that mutate random portions of a gene
repeatedly evolve into better genes as the survival of the fittest. PSO
is a population-based algorithm for training neural networks and
finding neural network architectures and optimizing network
weights. The key function of PSO is to get the optimized weights
(particle position) where particles are seeking to reach the best
solution (Ata, 2015). Genetic algorithms inherit themselves by
crossing half of the parent gene in each environment, repeating the
process of mutating occasionally. In a genetic algorithm, evolution
is learning.

2.1.3. Deep learning
Deep learning is a subfield of machine learning. Deep learning is

a kind of neural network, and it consists of large neural networks
that were difficult to implement in the past. Deep learning is the
result of accumulated machine learning and has been particularly
successful in image recognition, speech recognition, and behavioral
knowledge acquisition (Odaka, 2016; Tada, 2016). A deep neural
network is a multi-layered neural network with a number of units
and three or more layers, and learning using deep neural networks
is called deep learning. Deep learning classification is not easy to
classify according to learning methods or goals, unlike machine
learning. This study follows the deep learning classification sug-
gested by Asoh et al. (2015). The authors describe that deep
learning has complex relationships, and that classification can also
be divided by various criteria. They classify deep learning into a
deterministic model and a probabilistic model. Representative al-
gorithms in the deterministic model are a multi-layer neural
network, deep neural network, recurrent neural network (RNN),
convolution neural network (CNN), and autoencoder. For the
probabilistic model, Boltzmann machine, restricted Boltzmann
machine (RBM), deep Boltzmann machine (DBM), and deep belief
network (DBN) are commonly used. Recurrent Neural Network
(RNN) is a neural network that can reflect data by going back a few
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steps. RNN learns by considering context such as time-series data,
so it is used for learning speech data or natural language (Tada,
2016). Convolutional Neural Network (CNN) is mainly used for
image recognition, and the basic idea is to abstract an image from a
small feature to a complex feature (Odaka, 2016). CNN has recently
shown superior performance to image classification and feature
detection thanks to algorithm improvement, hardware develop-
ment, and big data development (Odaka, 2016).

2.2. The application of artificial intelligence in wind power
technology

There are three areas where AI algorithms are widely applied to
wind power generation: (i) forecasting of wind speed and wind
power, (ii) optimization of operation and maintenance (O&M), (iii)
optimization of the operation of wind farms. Because wind speed is
the most influential variable for the wind turbine at a given size, it
is necessary to analyze the wind speed of the wind power plant
before forecasting the generation amount. In addition, it is not easy
to predict the output because the output of the wind energy varies
greatly depending on the weather condition. Because forecasting of
wind power generation is applied to the economic evaluation of
wind farms, accuratewind power generation forecasting is a critical
factor for the successful operation of wind power generation. In
addition, since the intermittent output characteristics of wind po-
wer generation cause disturbance of the power system, it is
essential to predict the amount of wind power generation and to
stably connect the power generated from the wind farm to the
power system.

AI can contribute to the expansion of a large scale of wind power
generation and increase reliability by reducing the uncertainty of
variable wind energy as they enable to increase the accuracy of the
weather forecast, power generation, and demand prediction
(Bechrakis et al., 2004; Monfared et al., 2009; Salcedo-Sanz et al.,
2011; Li and Shi, 2010; Ortiz-García et al., 2011). Among other AI
algorithms, ANN has been widely used in predicting wind speed
and wind power generation. Mabel and Fernandez (2008) studied
wind power predictions utilizing ANN based on a 3-year database
containing wind speed, relative humidity, and generation hours.
The authors concluded that wind speed has a direct effect on power
generation. Jafarian and Ranjbar (2010) studied annual power
forecasting based on hourly recorded wind speeds from 25
different stations in Netherland by applying fuzzy modeling and
ANN. They selected average wind speeds, standard derivation of
wind speeds, and air density as input features. Peng et al. (2013)
compared ANN algorithm and a hybrid strategy based on phys-
ical/statistical models in wind power predictions. The authors
concluded that the ANNmodel could provide the prediction results
quickly with a relatively low accuracy while the hybrid predicting
method operated slowly with high accuracy. Zameer et al. (2017)
developed an integrated model using both ANN and genetic pro-
gramming for short-term power forecasting based on an hourly
sampled database from five wind farms in Europe. The authors
concluded that an average root mean squared error of 0.117575 is
reached.

AI also can induce cost reduction by optimizing the operation
and maintenance (O&M) of wind power, design real-time elec-
tricity pricing, and enable efficient power storage/transmission
through the smart grid (Zamora and Srivastava, 2010; Ibrahim et al.,
2020). Through an extensive literature review, Ata (2015) catego-
rized themain areas of AI application inwind energy systems-wind
power/speed prediction, fault diagnosis, pitch control, dynamic
modeling, optimal control, maximum power point tracking (MPPT)
control, voltage and frequency control, transient stability
improvement, sensitivity analysis in wind energy conversion
5

system, and wind turbine power control. Ata (2015) and
Heinermann and Kramer (2016) identify algorithms used for wind
speed and wind power prediction and concluded that one of the
key advantages of AI algorithms compared to other statistical
methods is its speed, simplicity, and powerful algorithm enabling
modeling multivariable and complex problems. The authors also
explain that AI algorithms are powerful to extract non-linear re-
lationships utilizing training data. Table 1 lists the list of previous
studies that research the effects of AI in thewind power system and
shows each algorithm applied to the areas of prediction of wind
power and operation and maintenance. Fig. 2 presents the process
of application of AI inwind power systems. The first is to determine
the wind speed and direction in advance and predict the amount of
electricity produced accordingly. To this end, not only satellite data
and meteorological data but also wind direction and wind speed
data installed for each wind turbine are used together. GOS (Global
Observing System) is an air and ocean survey program of WIGSO
(WMO Integrated Global Observing System). GOS observes the at-
mosphere and the ocean through satellites, ships, and aircraft, and
the marine observation field observes and provides sea surface
temperature and wave height. It predicts and provides time series
of sea wind (wind speed, direction) and wave height, wave height
and sea wind by sea area. Numerous weather-only satellites orbit
the Earth, tracking cloud patterns, wind, temperature, and meteo-
rological systems, and ground stations constantly collect data in
real-time (World Meteorological Organization, 2010). With the
advent of the Internet of Things (IoT), as more accurate and new
data is provided every day, the weather forecasting process is able
to export much more accurate data than before. The wind power
generation system consists of a control system, a condition moni-
toring system, and a SCADA (Supervisory Control and Data Acqui-
sition) system. Among them, the SCADA system enables efficient
management of wind farms (Lin and Liu, 2020). The SCADA system
monitors the overall operation status of the wind farm in connec-
tionwith the wind turbine controller. After efficiently analyzing the
SCADA data generated every second from the wind turbine,
modeling the data in the SCADA system of the wind turbine, the big
data platform can predict the amount of electricity produced by
using artificial intelligence algorithms.

Recently, as the development of large-scale wind farms has
increased significantly, research on AI techniques for optimizing
the operation of wind farms composed of dozens of wind turbines
is actively developed. Sung et al. (2020) proposed a power pre-
diction model using an artificial neural network and used a genetic
algorithm to optimize yaw angles in order tominimize wake effects
in wind turbine farms. They introduced the ANN-wake-power
model and concluded that ANN-based model showed better per-
formance and higher accuracy rate than the physical models. The
ANN-wake-power model they introduced achieved a good perfor-
mance within the training process of 5000 epochs. The optimiza-
tion process is effective and can significantly improve the power
ratio to 0.96 in all directions involved. They concluded that wind
turbines in different positions should adopt different yaw angle
control strategies, and that the established ANN-based model has
good accuracy and requires little computation cost. Physical models
are good for individual turbines but not practical for designing and
optimizing the layout of the wind farm (Sung et al., 2020). Recently,
deep learning techniques have been used to model wind farms. Li
(2003) and Barbounis et al. (2006) used a recurrent neural
network (RNN) to predict long-term wind power and wind speed,
respectively. In an operating wind farm, upstream wind turbines
both generate electricity and cause wakes, resulting in the dimin-
ishment of the performance of downstream wind turbines. Wu
et al. (2014) estimated the effectiveness of AI techniques in opti-
mizing layouts of the offshore wind farm, using genetic algorithms



Table 1
Summary of research conducted in artificial intelligence algorithms applied in the wind power system.

Type Function Algorithms References

Forecasting wind speed and Prediction of wind
power

Short term wind speed forecasting Neural networks � Bilgili et al. (2007)
Support vector machine � Zhou et al. (2011)

� Cheng and Guo (2013)
Short term wind power prediction Neural networks with

backpropagation
� Flores et al. (2005)
� Chang (2014)
� Li and Shi (2010)

Neural networks � Barbounis et al. (2006)
� Mabel and Fernandez (2008)

Support vector machine � Heinermann and Kramer
(2016)

� Treiber et al. (2016)
� Mohandes et al. (2004)
� Ortiz-García et al. (2011)
� Salcedo-Sanz et al. (2011)

Genetic algorithm and neural
networks

� Kolhe et al. (2011)

Evolutionary optimization � Jursa and Rohrig (2008)
Neuro-Fuzzy � Xia et al. (2010)
Ensembles � Hassan et al. (2015)
Fuzzy and neural networks � Monfared et al. (2009)
Random forest � Demolli et al. (2019)

Wind turbine operation andmaintenance (O&M) Pitch control and prediction Fuzzy neural networks � Sakamoto et al. (2006)
� Yilmaz and €Ozer (2009)
� Lin et al. (2010)

MPPT control Artificial neural networks � Mesemanolis et al. (2012)
� Nouali and Ouali (2011)

Voltage and frequency control Artificial neural networks � Muyeen et al. (2012)
Wind turbine power control Artificial neural networks � Barambones et al. (2010)

� Ren and Bao (2010)
Optimal control Recurrent neural networks � Kimura and Kimura (2013)
Fault diagnosis Artificial neural networks � Bangalore and Tjernberg

(2013)
Wind farm optimization Forecasting wind speed at different turbine

locations
Convolutional neural networks � Kou et al. (2020)
Support vector machine � Li et al. (2019)

Layouts of offshore wind farm Genetic algorithm � Wu et al. (2014)
Power generation Recurrent neural networks � Li (2003)

� Barbounis et al. (2006)

Fig. 2. The process of application of AI in wind power system.
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and ant colony system algorithms. They considered the wake effect,
wind speed series, and real cable parameters for the research and
applied any colony algorithm to optimize the cost of the circuit
configuration and genetic algorithm to minimize the loss of wind
power in a wind farm. Kou et al. (2020) developed a joint model of
6

convolutional neural network (CNN) and the gated recurrent units
(GRU) to forecast the short-term wind speed at turbine locations.
They concluded that the deep learning model provides satisfactory
forecasting results and has a competitive advantage over existing
models. Li et al. (2019) developed a support vector regression
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model to forecast the wind speed of wind turbines in a wind farm
and Knudsen et al. (2011) estimated the effective wind speeds of six
turbines in a wind farm using the Kalman estimator.

Besides the application of AI inwind power, Kibaara et al. (2020)
summarized different AI techniques for optimization of sizing of
hybrid renewable energy systems, introduced by previous authors.
For instance, Amer et al. (2013) proposed the cost reduction of HRES
using particle swarm optimization (PSO). Bansal et al. (2011) in
their simulations of a hybrid wind-solar and battery, used a meta-
heuristic particle swarm optimization for cost reduction. Ram et al.
(2013), in their design of a standalone solar ewind hybrid with a
diesel generator, used PSO to find the optimal sizes of each to meet
the existing load. In addition, Trazouei et al. (2013) proposed the
use of an imperial competitive algorithm, PSO, to establish the
optimal configuration of a hybrid wind-solar and batteries.
3. Methodology

3.1. Patent data collection

Using patent documents represented by technical knowledge
(Griliches, 1990; Ernst, 2003), this study performs machine
learning-based text mining techniques and IPC co-occurrence
network analysis to demonstrate the effects of AI in wind power
technology. When collecting patent data, text data including title
and abstract, applicant information, filing date, and International
Patent Classification (IPC) codewas collected for data analysis. First,
patent data was collected from the online patent database, the
KIPRIS (Korea Intellectual Property Rights Information Service)
database. KIPRIS is a free industrial patent information search ser-
vice agency in Korea managed by the Korean Intellectual Property
Office and Korea Institute of Patent Information. They provide do-
mestic and foreign patent information as well as other intellectual
property rights including trademark and utility model through the
database (DB). The collected patent data are those filed at four
Patent Trademark Offices-USPTO (United States Patent Trademark
Office), SIPO (Intellectual Property Office of China), JPO (Japan
Patent Office), and EPO (European Patent Office), from January 1,
1980, to December 31, 2017. Each AI algorithm was selected based
on the literature review on the theory of AI algorithm (Russell and
Norvig, 2011; Negnevitsky, 2011; Harrington, 2012; Marsland,
2015; Odaka, 2016; Tada, 2016) and classified each AI algorithm
into each category. Fig. 1 presents the classification of selected al-
gorithms. Since this study identifies the effect of AI on wind power
technology, a patent search query for this study is a combination of
each AI algorithm and the query for wind power; for example,
search for ‘support vector machine’, which a machine learning al-
gorithm and ‘wind power’ or wind turbine’ together. When
searching for more than one phrase at the same time, for instance,
‘support vector machine’*‘wind power’, the symbol, ’*’, that means
Table 2
Patent data collection.

Patent data Patent filed to the
◦ USPTO (United Sta
◦ EPO (European Pa
◦ JPO (Japan Patent
◦ SIPO (Intellectual

Patent filing period Patent data search: F
Patent database KIPRIS (www.kipris.o
Patent query formulation ◦ AI patent: Each AI

◦ Wind patent: “win
* ‘þ’ means ‘or
◦ Wind power techn
** ‘*’ means ‘and’
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‘and’ can be used. Patent data were analyzed dividing into four
periods, i) 1980e1990, ii) 1991e2000, iii) 2001e2010, iv)
2011e2017. Table 2 shows a summary of patent data collection, and
Fig. 3 shows the process for patent data analysis.
3.2. Preprocessing

This study proceeded with R library and analyzed the abstract of
the patent, which is the unstructured data in text form that pro-
vides summarized key information of technology. Natural language
processing refers to various techniques for mechanically analyzing
language phenomena, changing them into a form that can be un-
derstood by a computer, and expressing them in a language that
can be understood by humans. Patent documents are unstructured
text documents that require text preprocessing; thus, the conver-
sion is required in a form in which information can be extracted.
Since this research method uses machine-learning based text
mining techniques, text data such as title and abstract were
included when collecting patent data, and in addition, IPC code,
applicant information, and filing date were also collected. The
extracted patent data were analyzed on a 10-year interval. IPC co-
occurrence network analysis was performed to identify the
pattern of technology convergence of AI and wind power.
3.3. Text mining analysis

Natural language is the language that people speak or the sen-
tence they read. Natural language processing is a machine that
analyzes and interprets natural language and gives help or feedback
to people as a result of understanding their meaning. Natural lan-
guage processing divides sentences into words, extracts features,
and translates them into other languages (Rajman and Besancon,
1998). The analysis process called Text Mining extracts feature
words or sentences from a vast amount of text and graphs them.
Text Mining is also part of natural language processing. Usually, the
machine is difficult to analyze the sentence itself composed of
natural language, so it should be divided into words
(Gharehchopogh and Khalifelu, 2011). The primary task is
morphological analysis, which is the most fundamental task in
natural language processing. Morphological analysis is the task of
dividing words and recognizing the parts of words obtained by
word segmentation. This study employs Text Mining techniques
including word2vec and t-SNE (t-Stochastic Neighbor Embedding)
to analyze patent documents. Text mining is a data analysis
methodology for analyzing meaningful patterns by extracting in-
formation from various documents in the form of unstructured
data. The advantage of text mining is that text information, which is
unstructured, can be extracted and effectively structured to derive
analysis results (Meyer et al., 2008). Previous studies (Du et al.,
2020; Ebadi et al., 2020; Ke, 2020) examined the trend of
tes Patent and Trademark Office)
tent Office)
Office)
Property Institutions of China)
rom January 01, 1980 to December 31, 2017
r.kr)
algorithm
d power” þ “wind turbine"

ology using AI: Each AI algorithm*(“wind power” þ “wind turbine")

http://www.kipris.or.kr


Fig. 3. The flowchart of the analysis process. Edited and Reprinted from Lee (2020).
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academic research, the evolution of emergence of different aca-
demic areas, or the future technological trajectory by employing
text mining analysis from publications and patents. In order to
identify the technical characteristics inherent in the patent docu-
ment, a technique that can cluster texts and visualize the results is
required. In this study, the words were vectorized through
Word2Vec, a deep learning technique and the vectorized data was
visualized through t-SNE. Word2vec is a method of learning word
vectors using unsupervised learning, and it is a model that ex-
presses the relationship of words and shows them in a vector space.
Word2Vec uses a distributed text representation to grasp the
similarity between concepts. In this study, the Word2Vec analysis
method, which is a representativemethod to vectorize themeaning
of words, was used to reflect the similarity between texts (words) in
a patent document. Mikolov et al. (2013) describe Word2Vec as an
embedding method of non-instructional learning. Word2vec
identifies and provides a characteristic of data that has a similar
relationship within a specific space, and it predicts the next word
by converting the term into a number that can be applied to the
calculation. Word2Vec explains how to calculate the similarity
between texts using word embedding. Word embedding is the
technique of expressing words in spatial vectors. When word
embedding is used, words with similar meanings appear close to
each other, allowing the meaning of words to be included in the
vector. The text image is saved in binary code. Using the concept of
Bag of Word, characters are vectorized so that machine learning
algorithms can understand them. Word2Vec assumes that ‘words
appearing in similar locations have similar meanings’.

The t-Stocastic Neighbor Embedding (t-SNE) technique was
performed to identify and analyze the relationship between words
and to visualize the results of the convergence of AI and wind po-
wer technology. The t-SNE model is a machine learning-based al-
gorithm that shows data results for low-dimensional space while
maintaining neighboring high-dimensional data (Hinton and Lowe,
2003). The t-SNE is an algorithm that diminish the non-linear
8

dimension of data, and can be used to visualize the text
embedded in Word2vec by reducing it to two or three dimensions
or clustering it. Since t-SNE is output in the form of a graph, it is
usually used in two-dimensional shape. In the case of the t-SNE
algorithm, similar data are mapped to the closest points, and other
data aremapped to distant points. The t-SNE calculates the distance
of high-dimensional data with normally distributed probabilities
and apply a t-distributionwith 1 degree of freedom to identify if the
difference is small. Since the t-distribution is longer than the
normal distribution and the lower part of the graph is longer than
the normal distribution, using the t-distribution to project to a
lower dimension keeps the state of the near-distance data closer
and makes the state of the distant-data farther away (Maaten and
Hinton, 2008) (Fig. 4).

Fig. 5 presented by Maaten and Hinton (2008) demonstrates a
visualization of the handwritten number. Not only are cluster
created, but similar data like ‘3’ and ‘8’ are located close to each
other.

3.4. IPC co-occurrence network analysis

IPC co-occurrences network analysis identifies convergence of
technologies (Suzuki et al., 2008; Leydesdorff, 2008; Cho and Sin,
2011). If multiple IPC codes appear in one technology at the same
time, this can be seen as a convergence technology (Suzuki et al.,
2008). The patent classification code corresponding to the tech-
nical field to which the patent belongs is given when applying for
the patent. The structure of the international patent classification is
divided into eight sections as alphabet A to H, and each section is
subdivided into class, subclass, group, and subgroup as follows
(Fig. 6.). Multiple classification codes are allocated if the patents are
related to several technical fields. Thus, if a single patent is granted
multiple IPC codes, it can be understood that various technologies
have converged, and this is referred to as IPC co-occurrence. This
enables to identify and analyze the flow of technical knowledge



Fig. 4. The t-Stocastic Neighbor Embedding (t-SNE)
Source. Tada (2016).

Fig. 5. Visualization of 6000 digits from the MNIST data set produced by the random
walk version of t-SNE (employing all 60,000-digit images).
Source. Maaten and Hinton (2008).

Fig. 6. IPC code c
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based on IPC co-occurrence for individual patents. Suzuki, Junichi,
and Jun (2008) explain the IPC co-occurrence as a technology
convergence. Lee et al. (2015) applied IPC co-occurrence network
analysis to predict the pattern of technology convergence, using
patent data during the period from 1955 to 2011. In this study, by
performing the IPC co-occurrence network analysis, the dynamic
pattern of the convergence of AI and wind power technology is
demonstrated, and the patterns of convergences between
elementary technology are identified by each period. The IPC co-
occurrence network analysis was performed by 10 year basis, but
due to the low volume of patent data before 1990, patent data in the
period of 1980 and 2000 were analyzed together.
4. Results and discussions

4.1. Descriptive results

A total of 397,340 AI patents were searched for the entire period
from 1980 to 2017, and a total of 3621 wind technology patents
using AI and a total of 85,054 wind technology were searched,
respectively (Table 3). From looking at the number of patents filed
at each patent office, the patents filed at the USPTO had the most
among all four Patent Offices. Analyzing the trend of the patent
applications of wind power technology using AI, the total volume of
the patent application cases was not significant before 2001, but
since 2001, patent applications have increased and after 2011, the
number of patent applications has sharply increased. The number
of patents is only 35 in 1980e1990, but increased to 165 in
1991e2000 and to 801 in 2001e2010. The number of patents in
2011e2017 more than tripled from the previous period to 2620.
This phenomenon is presumably due to the active convergence and
application of AI inwind power technology in conjunctionwith the
lassification.



Table 3
The result of patent collection between January 1, 1980 and December 31, 2017.

Patent Period USPTO EPO JPO SIPO Total

Artificial intelligence 1980e1990 2820 1266 5074 28 9188
1991e2000 22,741 7297 16,530 559 47,127
2001e2010 92,013 17,397 20,752 6342 136,504
2011e2017 136,892 13,957 14,440 39,232 204,521
Total 254,466 39,917 56,796 46,161 397,340

Wind power technology 1980e1990 598 181 415 61 1255
1991e2000 873 412 1057 182 2524
2001e2010 10,477 4979 4971 9685 30,112
2011e2017 18,982 8236 4708 19,237 51,163
Total 30,930 13,808 11,151 29,165 85,054

Wind power technology using Artificial intelligence 1980~1990 18 12 5 0 35
1991~2000 118 42 5 0 165
2001~2010 600 168 27 6 801
2011~2017 1930 392 68 230 2620
Total 2666 614 105 236 3621

M. Lee and G. He Journal of Cleaner Production 297 (2021) 126536
IT boom, which began in late 1990 and begun in earnest in early
2000. Also, the global efforts to mitigate greenhouse gases may
have affected the increase in the innovation activity in wind power
technology. As the Kyoto Protocol was agreed upon at the Third
Conference of IPCC held in Kyoto, Japan in 1997 to prevent global
warming, and took effect on February 16, 2005, it can be assumed
that the development of low-carbon energy technology has been
actively developed since 2000. Patents filed at each patent office
show the USPTO received the largest number of patents with 2,666,
followed by EPO 614, SIPO 236 and JPO 105 (Table 3). The number of
patents filed at the USPTO is far higher than the number of patents
filed at the other three patent offices combined. Patents filed at
SIPO appear to increase sharply since 2012 when deep learning
developed. Before 2011, the number of patents filed to JPO was
higher than that filed at SIPO, but since 2012, the number of patents
filed at SIPO has surpassed that of JPO. Considering that the ma-
jority of applicants filing patents in SIPO, as with AI patent, are
Chinese companies, it appears that wind technology using AI
technology in China has been rapidly increasing as well following
the speed at which deep-learning technology evolves. Table 3 and
Fig. 7 present the number of patents in each patent office.

Table 4 lists the number of wind power technology patents
using AI by the algorithm. The most searched AI algorithms were
‘neural networks’, and a total of 968 were searched, followed by
Fig. 7. The trend of issued patents for wind power technology using AI in each Patent
Office during 1980e2017.
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‘fuzzy systems’ with 881 cases. A total of 300 of the ‘genetic algo-
rithm’ were searched, followed by a total of 299 of ‘bagging’ algo-
rithm. A total of 297 of the ‘expert system’were searched, followed
by 197 of the ‘Monte Carlo’ algorithm. The list of algorithm patents
is presented in Table 5. Table 5 presents the results of wind power
technology patent data by each AI algorithm. Analyzing patent data
by major algorithms on a chronological basis (Fig. 8.), almost all the
algorithms have been steadily increasing over time. No algorithms
showed a decrease. This suggests that since wind technology using
AI technology is in its early stages, there is no algorithm reached a
maturity stage. Traditional AI algorithms such as fuzzy, genetic al-
gorithm, and expert systems have been increasing even after deep
learning emerged in 2012, and it can be seen that they are still
essential and fundamental algorithms among AI algorithms applied
in wind power technology. Meanwhile, bagging and PCA algorithm
have been increasing rapidly since 2010. The reason why the al-
gorithm growth rate is different for each period can be assumed
because the algorithms that are newly developed, emerged, and
actively used for each period are different, and the algorithm
technology accumulated is widely used after a certain period. For
example, the fuzzy system is a representative algorithm of AI that
has been used for a long time, but even now, it is actively applied in
the fields of automatic control of wind power systems and electric
power systems (Xio et al., 2010). Neutral networks and support
vector machine are representative algorithms of machine learning,
and they have increased significantly since 2000. It might be that
these algorithms show high performance in prediction and
classification.

4.2. The results of text mining analysis with t-SNE algorithm

The entire word of an abstract of the patents of wind power
technology using AI was visualized through the t-SNE algorithm
(Figs. 9e11). The model applied student t-distribution to the Sto-
chastic Neigh-dividing algorithm to lower the high-dimensional
data into low-dimensional data. Figs. 9e11 show visualizations of
the entire word relationship. Word2Vector was extracted and
related keywords were made into 100 dimensions and displayed in
a two-dimensional graph. The x-axis m[1,1] and y-axis m[2,2] mean
that the data has been reduced in two dimensions. A word
embedding map visualized through the t-SNE algorithm shows the
following results. Fig. 9 presents the technological convergence
prior 2000 and can be observed that AI technology and wind power
technology convergence are not active. Prior to 2000, AI-related
technologies, except for Fuzzy, showed a low relationship with
wind power technology. No noticeable clusters were observed, and



Table 4
The patent search result of wind power technology using AI at the four patent offices between January 1, 1980 and December 31, 2017, listed by the algorithm.

AI algorithm used in wind power technology Abbreviation Patent Office Total

USPTO EPO JPO SIPO

Neural networks ANN, NN 732 153 39 44 968
Fuzzy Fuzzy 700 135 13 33 881
Genetic algorithm GA 233 41 5 21 300
Bagging Bagging 228 70 1 0 299
Expert system Expert system 226 46 23 2 297
Monte carlo Monte carlo 123 33 10 31 197
Support vector machine SVP 84 18 4 15 121
Principal component analysis PCA 50 14 33 11 108
Evolutionary learning Evolutionary learning 38 60 0 0 98
Decision trees Decision trees 58 12 0 0 70
Particle swarm optimization PSO 32 3 5 21 61
Random forest RF 47 6 0 1 54
Recurrent neural network RNN 34 8 2 2 46
Hierarchical clustering Hierarchical clustering 13 6 0 2 21
K nearest neighbor KNN 14 0 1 1 16
Markov decision process Markov decision process 12 2 0 0 14
Q-learning Q learning 9 3 0 1 13
Deep neural network DNN 9 0 0 3 12
Convolutional neural network CNN 4 1 0 4 9
Deep belief network DBN 4 2 0 3 9
K-means Kmeans 0 0 8 0 8
Ant colony optimization ACO 5 0 0 0 5
Ensemble learning Ensemble learning 5 0 0 0 5
Density-based spatial clustering of applications with noise DBSCAN 2 1 0 1 4
Boltzmann machine BM 2 0 0 1 3
Autoencoder Autoencoder 2 0 0 0 2
Naïve bayes Naïve bayes 0 0 0 0 0
Deep q-learning Deep q-learning 0 0 0 0 0
Deep Boltzmann machine DBM 0 0 0 0 0

Total 2666 614 105 236 3621

Table 5
IPC code and definition.

IPC Section Section definition Class Class definition Subclass Subclass definition

F02 F Mechanical engineering; Lighting;
Heating; Weapons; Blasting

02 Combustion engines; Hot-gas or
combustion-product engine plants

H02M H Electricity 02 Generation, conversion, distribution of
electric power

M Apparatus for conversion between AC and DC

H04 H Electricity 04 Electric communication technique
H05B H Electricity 05 Electric techniques otherwise provided

for
B Electric heating; electric lighting not otherwise provided

for
G01M G Physics 01 Measuring; Testing M Testing static or dynamic balance of machines of

structures
G05F G Physics 05 Controlling; Regulating F Systems for regulating electric or magnetic variables
G06F G Physics 06 Computing; Calculating; Counting F Electric digital data processing (computer systems based

on specific computational models)
G06N G Physics 06 Computing; Calculating; Counting N Computer systems based on specific computational

models
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no patterns were observed showing high relationships between
technologies. Fig. 10 presents the technology convergence of AI and
wind power technologies from 2000 to 2010 and shows that
technology convergence patterns had become much more active.
Since 2000, artificial neural networks had led prediction and
forecasting technology while being applied inwind technology. It is
presented that the support vector machine algorithm has led to
forecasting ability in wind power along with the neural network. It
seems that fuzzy has led the turbine control technology optimized
for wind speed and wind direction in relation to yaw, pitch, and
blade to optimize wind turbine blades. Fig. 11 is a diagram of AI and
wind power technology convergence from 2011 to 2017, and one
can observe that technology convergence patterns were much
more complex than before in 2010. One interesting finding is that
after 2011 two words, ‘stability’ and ‘reliability’, appeared nearby
11
‘power supply’, ‘generation’, and ‘storage’. The relationship be-
tween the words-’wind farm’, ‘power supply’, ‘short term’, ‘stabil-
ity’, and ‘reliability’-appeared high. In addition, machine-learning
algorithms such as SVM and neural networks have a high rela-
tionship with thewords ‘forecasting’, ‘training’ and ‘improved’. This
shows that stability and reliability issues and related wind power
technologies have become more important while wind power
generation is increasing because wind power is dependent on
variable winds, and that machine-learning algorithms have devel-
oped technology to address these problems by improving the
prediction of wind power generation.
4.3. IPC co-occurrence network analysis

In the IPC co-occurrence network map, it can be explained that



Fig. 8. The trend of issued patents for wind power technology using major AI algorithms during 1980e2017.

Fig. 9. The result of t-SNE algorithm model (1980e2000).
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each cluster is the one resulting from multiple IPC codes appearing
in a single patent document and frequent relationships between
them. In other words, the coexistence of IPC belonging to different
technological areas can explain the form of technology conver-
gence. In analyzing the data for this study, the analysis was per-
formed using only four IPC codes corresponding to the IPC subclass
12
so that the linkage structure of science and technology is not overly
subdivided. Drawing upon the outcomes of technology conver-
gence, five classes of codes except for A, C, and E among eight IPC
classifications appeared in 1980e2000 (Fig. 12). Although no spe-
cific clusters have emerged, it can be seen that convergence be-
tween technologies in various areas is underway. In particular, even



Fig. 10. The result of t-SNE algorithm model (2001e2010).

Fig. 11. The result of t-SNE algorithm model (2011e2017).
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before 2000, a number of computing-related technologies such as
the G6 and G02 appeared. The level of convergence between G05F
and H02M appeared to be high. G05F is a technology related to
‘systems for regulating electric or magnetic variables’, and H02M is
related to ‘apparatus for conversion between current (AC/DC) or
voltage’. Thus, it can be seen that the demand for system-related
technologies to control voltage and current has increased. As
demonstrated in Fig. 13, the degree centrality of the G06, especially
G06F, was high in 2001e2010. G06F corresponds to ‘electric digital
data processing’ and mainly includes data processing devices,
13
equipment, and methods. Thus, from 2001 to 2010, it can be seen
that data processing technologies had actively used in wind tech-
nology. Compared with the previous period, it appeared that a
more diverse field of technologies is emerging and becoming a core
technology. Since 2011, the degree of technology convergence of
IPC codes such as G06N, H04I, H05B, and G01M has been high
(Fig. 14). G01 is a technology related to ‘measuring and testing’ and
F02 is a technology related to ‘combustion engines: hot-gas or
combustion-product engine plants’. It is interesting to note that in
the course of the wind and the AI technology convergence process,



Fig. 12. IPC Co-occurrence network map (1980e2000).

Fig. 13. IPC Co-occurrence network map (2001e2010).
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convergence between technology related to combustion engines
and technology related to measuring and testing is actively un-
derway. Table 5 shows the description of each section of the IPC
code.
14
5. Summary

This paper proposed a novel approach and methods to analyze
the dynamic changes of the application of AI in wind power



Fig. 14. IPC Co-occurrence network map (2011e2017).
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technology overtime during 1980e2017. Through literature review,
descriptive statistics, text mining analysis with t-SNE algorithm
model, and IPC co-occurrence network analysis, this study revealed
the following findings. First, when it comes to AI algorithms used in
wind power technology, fuzzy, neural networks, and support vector
machine algorithms have been widely used to predict wind speed
and wind power and also applied to improve the stability and
reliability of wind power systems. Fuzzy has been widely used to
optimize the operation and maintenance of wind turbines and to
improve the performance of wind turbine operation, and neural
networks and support vector machine has been applied to predict
wind power. Beginning from 2011, when machine learning has
been used widely and deep learning emerged, support vector ma-
chine, convolutional neural network (CNN) and recurrent neural
network (RNN) algorithms have been applied increasingly in wind
power technology. Second, in regard to wind power technology
innovation evolved with the advancement of AI, since 2011,
material-related technologies and battery technologies, as well as
energy storage systems, have emerged as core technology groups in
wind power technology. The technology group of energy storage
systems has been interrelated with many technologies than any
other technologies, showing the highest degree of centrality. This
can be inferred that storing variable and excessive wind energy is
becoming more important to increase efficiency and maintain a
stable wind power system. The material sector, which is an
important part of the lightweight and cost reduction of wind tur-
bines, has also emerged as a key technology group. This can be seen
that light and solid wind turbine blades improve the performance
of wind power generation, and that AI enables more accurate ma-
terial packages of wind blades. Until 2000, prominent core tech-
nology visually did not emerge, but technologies in the area of
15
energy storage systems after the 2000s and material technologies
after 2010 appeared a core technology. It can be assumed that this is
the result of the development of machine learning algorithms such
as support vector machines and neural network algorithms after
2000 and the result of the application of these algorithms to
accumulated big data of wind power. Fig. 15 present the evolution
of AI application in wind power technology during 1980e2017.
6. Conclusion

AI can better predict the wind speed and direction in advance
and predict power production accordingly. AI is also used to predict
the fault of wind turbines in advance so that solutions for the fault
can be prepared preemptively to reduce the operation costs. By
controlling the generator under optimal conditions using past data,
AI can maximize the power generation efficiency of wind turbines.
AI has been increasingly applied in wind power automation and
optimization. These findings suggest that AI promotes low-carbon
energy technology innovation by spurring wind technology
developing and accelerating energy transition from fossil fuel to
green energy. As many countries proclaim carbon neutrality, wind
power generation, especially offshore wind power generation, is
drawing more attention as a clean energy source for achieving
carbon neutrality. As the construction of offshore wind power
plants is growing and the wind turbines are also increasing in size,
it is important to increase the capacity factor of wind farms to
secure economic feasibility. The speed and scope of the techno-
logical development of AI are fast and broad, and the application of
AI in wind power technology is evolving fast. Thus, to respond to
this fast-changing landscape, policy-makers need to understand
the changing landscape of AI’s role in green technology



Fig. 15. The evolution of AI application in wind power technology.
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advancement and support knowledge diffusion and create an
ecosystem for low carbon technology innovation.

CRediT authorship contribution statement

Mekyung Lee: Conceptualization, Methodology, Investigation,
Writing, Visualization, Writing e original draft. Gang He: Valida-
tion, Supervision, Writing e original draft, Writing e review &
editing.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the ICT Consilience Creative program (IITP-
2019-2011-1-00783) supervised by the IITP (Institute for Informa-
tion & communications Technology Planning & Evaluation).

References

Albino, V., Ardito, L., Dangelico, R.M., Messeni, P.A., 2014. Understanding the
development trends of low-carbon energy technologies: a patent analysis. Appl.
Energy 135, 836e854.

Alpaydin, E., 2009. Introduction to Machine Learning. MIT Press, Boston.
Altuntas, S., Dereli, T., Kusiak, A., 2015. Forecasting technology success based on

patent data. Technol Forecast Soc 96, 202e214.
Amer, M., Namaane, A., M’Sirdi, N.K., 2013. Optimization of hybrid renewable En-

ergy systems (HRES) using PSO for cost reduction. Energ Procedia 42, 318e327.
Asoh, H., Yasuda, S.M., Okanohara, D., Okatani, T., Kubo, Y., Bollegala, D., 2015. Deep

Learning. JPUB, Seoul. Translated by Shim, H.
Ata, R., 2015. Artificial neural networks applications in wind energy systems:a re-

view. Renew. Sustain. Energy Rev. 49, 534e562.
Bangalore, P., Tjernberg, L.B., 2013. An approach for self evolving neural network

based algorithm for fault prognosis in wind turbine. In: Proceedings of the 2013
IEEE Grenoble Conf.

Bansal, A.K., Gupta, R.A., Kumar, R., 2011. Optimization of hybrid pv/wind energy
system using Meta particle swarm Optimization (mpso). India International
Conference on Power Electronics 2010. IICPE2010.

Barambones, O., Alkorta, P., Sen, M.D.L., 2010. Wind turbine output power maxi-
mization based on sliding mode control strategy. In: Proceedings of the 2010 Int
Symp Indust Electron.

Barbounis, T., Theocharis, J., Alexiadis, M., Dokopoulos, P., 2006. Long-term wind
speed and power forecasting using local recurrent neural network models. IEEE
Trans. Energy Convers. 21 (1), 273e284.

Bechrakis, D., Deane, J., Mckeogh, E., 2004. Wind resource assessment of an area
using short term data correlated to a long term data set. Sol. Energy 76 (6),
725e732.

Bilgili, M., Sahin, B., Yasar, A., 2007. Application of artificial neural networks for the
wind speed prediction of target station using reference stations data. Renew.
Energy 32 (14), 2350e2360.

Bointner, R., 2014. Innovation in the energy sector: lessons learnt from RD expen-
ditures and patents in selected IEA countries. Energy Pol. 73, 733e747.

Borowski, P.F., 2020. New technologies and innovative solutions in the development
16
strategies of energy enterprises. HighTech and Innovation Journal 1 (2).
Chang, W.Y., 2014. A literature review of wind forecasting methods. J. Power Energy

Eng. 161e168, 02.
Cheng, X., Guo, P., 2013. Short-term wind speed prediction based on support vector

machine of fuzzy information granulation. In: Proceedings of the 2013 25th

Chines Control and Decis Conf 2013.
Cho, T., Sin, H., 2011. Patent citation network analysis of core and emerging tech-

nologies in Taiwan: 1997-2008. Scientometrics 39, 795e811.
Cockburn, I.M., Henderson, R., Stern, S., 2017. The Impact of artificial intelligence on

innovation. In: NBER Conf Res Issue in Artificial Intelligence. September 2017.
Colak, I., Sagiroglu, S., Yesilbudak, 2012. Data mining and wind power prediction: a

literature review. Renew. Energy 46, 241e247.
Dai, J., Tan, Y., Shen, X., 2019. Investigation of energy output in mountain wind farm

using multiple-units SCADA. Appl. Energy 239, 225e238.
Dangeti, P., 2017. Statistics for Machine Learning: Build Supervised, Unsupervised,

and Reinforcement Learning Models Using Both Python and R. Packt Publishing,
Birmingham.

Demolli, H., Dokuz, A.S., Ecemis, A., Gokcerk, M., 2019. Wind power forecasting
based on daily wind speed data using machine learning algorithms, 198. Energy
Conversion and Management.

Du, X., Kowalski, M., Varde, A.S., Melso, G., Taylor, R., 2020. Public opinion matters:
mining social media text for environmental management. ACM SIGWEB
Newsletter 5.

Ebadi, A., Tremblay, S., Goutte, C., Schiffauerova, A., 2020. Application of machine
learning techniques to assess the trends and alignment of the funded research
output. J Informetrics 14.

Ernst, H., 2003. Patent information for strategic technology management. World
Patent Inf. 25, 233e242.

Evan, A., Strezov, V., Evans, T., 2012. Assessment of utility energy storage options for
increased renewable energy penetration. Renew. Sustain. Energy Rev. 16,
4141e4147.

Evans, R., Gao, J., 2016. DeepMind AI reduces energy used for cooling Google data
centers by 40%. Google Sustainability Blog. Retrieved from. https://blog.google/
outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/.

Flores, P., Tapia, A., Tapia, G., 2005. Application of a control algorithm for wind
speed prediction and active power generation. Renew. Energy 30, 523e536.

Fuji, H., Magani, S., 2018. Trends and priority shifts in artificial intelligence tech-
nology invention: a global patent analysis. Econ. Anal. Pol. 58, 60e69.

Gharehchopogh, F.S., Khalifelu, Z.A., 2011. Analysis and evaluation of unstructured
data: text mining versus natural language processing. In: 2011 5th International
Conference on Application of Information and Communication Technologies.
AICT, Baku.

Global Wind Energy Councila, 2020. GWEC: over 60GW of wind energy capacity
installed in 2019, the second-biggest year in history. Retrieved July 15 2020,
from. https://gwec.net/gwec-over-60gw-of-wind-energy-capacity-installed-in-
2019-the-second-biggest-year-in-history/#:~:text¼GWEC%20has%20published
%20the%2015,best%20year%20for%20wind%20historically.

Global Wind Energy Councilb, 2020. Global Wind 2019 Report Annual Market Up-
date. Global Wind Energy Council (GWEC), Brussels, Belgium.

Griliches, Z., 1990. Patent statistics as economic indicators: a survey. J Eco Literature
28 (4), 1661e1707.

Harrington, P., 2012. Machine Learning in Action. Shelter Island, Manning.
Hassan, S., Khosravi, A., Jaafar, J., 2015. Examining performance of aggregation al-

gorithms for neural network-based electricity demand forecasting. Int. J. Electr.
Power Energy Syst. 5 (64), 1098e1105.

Heinermann, J., Kramer, O., 2016. Machine learning ensembles for wind power
prediction. Renew. Energy 89, 671e679.

Hinton, G.E., Roweis, S., 2003. Stochastic Neighbor Embedding. Toronto University,
Department of Computer Science. Retrieved from. https://www.cs.toronto.edu/
~fritz/absps/sne.pdf.

Hof, R.D., 2015. Deep learning. MIT technology review. Retrieved from. https://
www.technologyreview.com/s/513696/deep-learning/.

Hong, Y.Y., Rioflorido, C.L.P., 2019. A hybrid deep learning-based neural network for
24-h ahead wind power forecasting. Appl. Energy 250, 530e539.

Ibrahim, M.S., Dong, W., Yang, Q., 2020. Machine learning driven smart electric

http://refhub.elsevier.com/S0959-6526(21)00756-3/sref1
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref1
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref1
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref1
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref2
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref3
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref3
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref3
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref4
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref4
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref4
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref5
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref5
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref6
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref6
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref6
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref7
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref7
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref7
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref8
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref8
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref8
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref9
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref9
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref9
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref10
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref10
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref10
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref10
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref11
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref11
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref11
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref11
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref12
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref12
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref12
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref12
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref13
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref13
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref13
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref14
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref14
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref15
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref15
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref15
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref16
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref16
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref16
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref17
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref17
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref17
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref18
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref18
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref19
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref19
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref19
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref20
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref20
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref20
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref21
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref21
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref21
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref22
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref22
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref22
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref23
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref23
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref23
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref24
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref24
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref24
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref25
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref25
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref25
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref26
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref26
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref26
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref26
https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/
https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref28
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref28
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref28
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref29
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref29
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref29
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref30
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref30
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref30
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref30
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref30
https://gwec.net/gwec-over-60gw-of-wind-energy-capacity-installed-in-2019-the-second-biggest-year-in-history/#:~:text=GWEC%20has%20published%20the%2015,best%20year%20for%20wind%20historically
https://gwec.net/gwec-over-60gw-of-wind-energy-capacity-installed-in-2019-the-second-biggest-year-in-history/#:~:text=GWEC%20has%20published%20the%2015,best%20year%20for%20wind%20historically
https://gwec.net/gwec-over-60gw-of-wind-energy-capacity-installed-in-2019-the-second-biggest-year-in-history/#:~:text=GWEC%20has%20published%20the%2015,best%20year%20for%20wind%20historically
https://gwec.net/gwec-over-60gw-of-wind-energy-capacity-installed-in-2019-the-second-biggest-year-in-history/#:~:text=GWEC%20has%20published%20the%2015,best%20year%20for%20wind%20historically
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref32
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref32
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref32
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref33
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref33
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref33
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref34
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref35
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref35
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref35
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref35
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref36
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref36
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref36
https://www.cs.toronto.edu/%7Efritz/absps/sne.pdf
https://www.cs.toronto.edu/%7Efritz/absps/sne.pdf
https://www.technologyreview.com/s/513696/deep-learning/
https://www.technologyreview.com/s/513696/deep-learning/
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref40
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref40
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref40
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref41


M. Lee and G. He Journal of Cleaner Production 297 (2021) 126536
power systems: current trends and new perspectives. Appl. Energy 272.
International Renewable Energy Agency, 2019. International Renewable Energy

Agency Report. Artificial Intelligence and Big Data: Innovation Landscape Brief
2019.

Jafarian, M., Ranjbar, A.M., 2010. Fuzzy modeling techniques and artificial neural
networks to estimate annual energy output of a wind turbine. Renew. Energy
35.

Jha, S.K., Bilalovic, J., Jha, A., Patel, N., Zhang, H., 2017. Renewable energy: present
research and future scope of Artificial Intelligence. Renew. Sustain. Energy Rev.
77, 297e317.

Jursa, R., Rohrig, K., 2008. Short-term wind power forecasting using evolutionary
algorithms for the automated specification of artificial intelligence models. Int.
J. Forecast. 24 (4), 694e709.

Ke, Q., 2020. An analysis of the evolution of science-technology linkage in
biomedicine. J Informetrics 14.

Kibaara, S., Murage, D.K., Musau, P., Saulo, M.J., 2020. Comparative analysis of
implementation of solar PV systems using the advanced SPECA modeling tool
and HOMER software: Kenyan Scenario. HighTech and Innovation Journal 1 (1).

Kim, M., Kim, C., 2012. On A Patent analysis method for technological convergence.
Procedia: Social and Behavioral Sciences 40, 657e663.

Kimura, K., Kimura, T., 2013. Neural networks approach for wind-solar energy
system with complex networks. Proceedings of the 2013. IEEE 10th Int Conf
Power Electron Drive Syst.

Knudsen, T., Bak, T., Soltani, M., 2011. Prediction models for wind speed at turbine
locations in a wind farm. Wind Energy 14 (7), 877e894.

Kolhe, M., Lin, T., Maunuksela, J., 2011. GA-ANN for short-term wind energy pre-
diction. In: Proceedings of the 2011 Asia-Pacific Power Energ Engineering Conf
2011.

Kou, P., Wang, C., Liang, D., Cheng, S., Gao, L., 2020. Deep learning approach for wind
speed forecasts at turbine locations in a wind farm. IET Renew. Power Gener. 14,
2416e2428.

Lee, M., 2020. An analysis of the effects of artificial intelligence on electric vehicle
technology innovation using patent data. World Patent Inf. 63, 102002.

Lee, W., Han, E., Sohn, S., 2015. Predicting the pattern of technology convergence
using big-data technology on large-scale triadic patents. Technol Forecast Soc
100, 317e329.

Lei, M., Jiang, S., Chuanwen, J., Hongling, L., Yan, Z., 2009. A review on the fore-
casting of wind speed and generated power. Renew Sust Energ Rev 13,
915e920.

Leydesdorff, L., 2008. Patent classifications as indicators of intellectual organization.
J American Soc Info Sci Tech 59 (10), 1582e1597.

Li, S., 2003. Wind power prediction using recurrent multilayer perceptron neural
networks. 2003 IEEE Power Engineering Society General Meeting 4,
2325e2330.

Li, G., Shi, J., 2010. On comparing three artificial neural networks for wind speed
forecasting. Appl. Energy 7 (7), 2313e2320.

Li, Z.L., Xia, J., Liu, A., Li, P., 2019. States prediction for solar power and wind speed
using BBA-SVM. IET Renew. Power Gener. 13 (7), 1115e1122.

Lin, Z., Lio, X., 2020. Wind power forecasting of an offshore wind turbine based on
high-frequency SCADA data and deep learning neural network. At. Energ. 201,
117693.

Lin, W.M., Hong, C.M., Cheng, F.S., 2010. Fuzzy neural network output maximization
control for sensorless wind energy conversion system. At. Energ. 35 (2),
592e601.

Maaten, L., Hinton, G., 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579e2605.

Mabel, M.C., Fernandez, E., 2008. Analysis of wind power generation and prediction
using ANN: a case study. Renew. Energy 33 (5), 986e992.

Marsland, S., 2015. Machine Learning: an Algorithmic Perspective. CRC Press, Boca
Raton:FL.

Mesemanolis, A., Mademlis, C., Kioskeridis, I., 2012. High-efficiency control for a
wind energy conversion system with induction generator. IEEE Trans. Energy
Convers. 27 (4), 958e967.

Meyer, D., Hornik, K., Feinerer, I., 2008. Text mining infrastructure in R. J. Stat.
Software 25 (5), 1e54.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J., 2013. Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in
Neural Information Processing Dystems, vol. 26.

Mitchell, T.M., 1997. Machine Learning. WCB, Boston. McGraw-Hill Boston.
Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A., 2004. Support vector

machines for wind speed prediction. Renew. Energy 29 (6), 939e947.
Monfared, M., Rastegar, H., Kojabadi, H.M., 2009. A new strategy for wind speed

forecasting using artificial intelligent methods. Renew. Energy 34 (3), 845e848.
Muyeen, S., Hasanien, H., Tamura, J., 2012. Reduction of frequency fluctuation for

wind farm connected power systems by an adaptive artificial neural network
controlled energy capacitor system. IET Renew. Power Gener. 6 (4), 226e235.

Negnevitsky, M., 2011. Artificial Intelligence: a Guide to Intelligent Systems. Addison
Wesley, Harlow.

Nouali, S., Ouali, A., 2011. Multi-Layer neural network for sensorless MPPT control
for wind energy conversion system using doubly fed twin stator induction
generator. In: Proceedings of the Eighth Int Multi-Conf on Syst, Signal Device.

Odaka, T., 2016. Machine learning and deep learning. Trans. Ahn, D. FREELEC. Seoul.
11e200.

Ortiz-García, E.G., Salcedo-Sanz, S., P�erez-Bellido, �A.M., Gasc�on-Moreno, J., Portilla-
17
Figueras, J.A., Prieto, L., 2011. Short-term wind speed prediction in wind farms
based on banks of support vector machines. Wind Energy 14 (2), 193e207.

Ozcanli, A., Yaprakadal, F., Baysal, M., 2020. Deep learning methods and applications
for electrical power systems: a comprehensive review. Int J Energ Research 44
(9).

Peng, H., Liu, F., Yang, X., 2013. A hybrid strategy of short term wind power pre-
diction. Renew. Energy 50.

Pilkington, A., Dyerson, R., Tissier, O., 2002. The electric vehicle: patent data as
indicators of technological development. World Patent Inf. 4, 5e12.

Qerimi, D., Dimitrieska, C., Vasilevska, S., Rrecaj, A., 2020. Modeling of the solar
thermal energy use in urban areas. Civil Engineering Journal 6 (7).

Qi, X., Zhang, Y., Ou, Q., Ha, S.T., Qiu, C., Zhang, H., Bao, Q., 2018. Photonics and
optoelectronics of 2D metal-halide perovskites. Small 14 (31), 1800682.

Rajman, M., Besancon, R., 1998. Text mining: natural Language techniques and text
mining applications. In: Spaccapietra, S., Maryanski, F. (Eds.), Data Mining and
Reverse Engineering. IFIP d the International Federation for Information Pro-
cessing. Springer, Boston, MA.

Ram, G.N., Shree, J.D., Kiruthiga, A., 2013. Cost optimization of stand alone hybrid
power generation system using PSO. International Journal of Advanced
Research in Electrical, Electronics and Instrumentation Engineering 2 (8).

Ren, Y.F., Bao, G.Q., 2010. Control strategy of maximum wind energy capture of
direct-drive wind turbine generator based on neural-network. In: Proceedings
of the 2010 Asia-Pacific Power and Energ Eng Conf 2010.

Russell, S.J., Norvig, P., 2011. Artificial Intelligence: A Modern Approach, third ed.
Pearson. Global Edition.

Sakamoto, R., Senjyum, T., Urasaki, N., Fujita, H., Sekine, H., 2006. Output power
leveling of wind turbine generator for all operating regions by pitch angle
control. In: Proceedings of IEEE Power Engin Soc General Meeting 2006.

Salcedo-Sanz, S., Ortiz-García, E.G., P�erez-Bellido, �A.M., Portilla-Figueras, A.,
Prieto, L., 2011. Short term wind speed prediction based on evolutionary sup-
port vector regression algorithms. Expert Syst. Appl. 38 (4), 4052e4057.

Smola, A., Vishwanathan, S.V.N., 2008. Introduction to Machine Learning. Cam-
bridge University Press.

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., Keane, J.,
Nenadic, G., 2019. Machine learning methods for wind turbine condition
monitoring:a review. Renew. Energy 133, 620e635.

Sun, H., Gao, X., Yang, H., 2020. A review of full scale wind-field measurement of the
wind turbine wake effect and a measurement of the wake-interaction effect.
Renew. Sustain. Energy Rev. 132, 1140e1142.

Sung, H., Qiu, Ch, Lu, L., Gao, X., Chen, J., Yang, H., 2020. Wind turbine power
modelling and optimization using artificial neural network with wind field
experimental data. Appl. Energy 280, 115880.

Suzuki, K., Junichi, S., Jun, H., 2008. Innovation position: a quantitative analysis to
evaluate the efficiency of research development on the basis of patent data. In:
Proceedings of the 41st Hawaii Int Conf Sys Scie.

Tada, S., 2016. First Time to Learn Artificial Intelligence. Hanvit Publisher. Trans.
Song, K.

Trazouei, S.L., Trazouei, F.L., Ghiamy, M., 2013. Optimal design of a hybrid solar-
wind-diesel power system for rural electrification using imperialist competi-
tive algorithm. Int. J. Renew. Energy Resour. 3 (2), 403e411.

Treiber, N.A., Heinermann, J., Kramer, O., 2016. Wind power prediction with ma-
chine learning. Comp Sust 645, 13e29.

Tseng, C.Y., Ting, P.H., 2013. Patent analysis for technology development of artificial
intelligence: a country-level comparative study. Innovat. Manag. Pol. Pract. 15,
463e475.

Wang, Y., Yu, Y., Cao, S., Zhang, X., Gao, S., 2020. A review of applications of artificial
intelligent algorithms in wind farms. Artif. Intell. Rev. 53, 3447e3500.

Wang, X., Zeng, X., Yang, X., Li, J., 2018. Feasibility study of offshore wind turbines
with hybrid monopile foundation based on centrifuge modeling. Appl. Energy
209, 127e139.

World Meteorological Organization, 2010. Guide to the Global Observing System.
Wu, Y.K., Lee, C.Y., Chen, C.R., Hsu, K.W., Tseng, H.T., 2014. Optimization of the wind

turbine layout and transmission system planning for a large-scale offshore
wind farm by AI technology. IEEE Trans. Ind. Appl. 50 (3).

Xia, J., Zhao, P., Dai, Y., 2010. Neuro-fuzzy networks for short-term wind power
forecasting. In: Proceedings of the 2010 Int Conf Power Syst Tech 2010.

Yilmaz, A.S., €Ozer, Z., 2009. Pitch angle control in wind turbines above the related
wind speed by multi-layer perceptron and radial basis function neural net-
works. Expert Syst. Appl. 36 (6), 9767e9775.

Yoldas, Y., Onen, A., Muyeen, S.M., Vasilakos, A.V., Alan, I., 2017. Enhancing smart
grid with microgrids: challenges and opportunities. Renew. Sustain. Energy Rev.
72, 205e214.

Zahraee, S.M., Khalaji, A.M., Saidur, R., 2016. Application of artificial intelligence
methods for hybrid energy system optimization. Renew. Sustain. Energy Rev.
66, 617e630.

Zameer, A., Arshad, J., Khan, A., Raja, M.A.Z., 2017. Intelligent and robust prediction
of short term wind power using genetic programming based ensemble of
neural networks. Energy Convers. Manag. 134, 361e372.

Zamora, R., Srivastava, A.K., 2010. Controls for microgrids with storage: review,
challenges, and research needs. Renew. Sustain. Energy Rev. 14 (7), 2009e2018.

Zhang, Y., Huang, T., 2018. Big data analytics in smart grids: a review. Energy
Informatics 1.

Zhou, J., Shi, J., Li, G., 2011. Fine tuning support vector machines for short-termwind
speed forecasting. Energy Convers. Manag. 52 (4), 1990e1998.

http://refhub.elsevier.com/S0959-6526(21)00756-3/sref41
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref42
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref42
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref42
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref43
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref43
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref43
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref44
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref44
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref44
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref44
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref45
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref45
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref45
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref45
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref46
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref46
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref47
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref47
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref47
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref48
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref48
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref48
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref49
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref49
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref49
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref50
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref50
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref50
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref51
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref51
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref51
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref52
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref52
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref52
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref52
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref53
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref53
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref54
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref54
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref54
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref54
http://refhub.elsevier.com/S0959-6526(21)00756-3/optuOZXWZofds
http://refhub.elsevier.com/S0959-6526(21)00756-3/optuOZXWZofds
http://refhub.elsevier.com/S0959-6526(21)00756-3/optuOZXWZofds
http://refhub.elsevier.com/S0959-6526(21)00756-3/optuOZXWZofds
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref55
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref55
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref55
http://refhub.elsevier.com/S0959-6526(21)00756-3/optyLpeQiSfrT
http://refhub.elsevier.com/S0959-6526(21)00756-3/optyLpeQiSfrT
http://refhub.elsevier.com/S0959-6526(21)00756-3/optyLpeQiSfrT
http://refhub.elsevier.com/S0959-6526(21)00756-3/optyLpeQiSfrT
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref56
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref56
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref56
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref57
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref57
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref57
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref58
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref58
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref58
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref59
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref59
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref59
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref59
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref60
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref60
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref60
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref61
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref61
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref61
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref62
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref62
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref63
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref63
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref63
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref63
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref64
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref64
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref64
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref65
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref65
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref65
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref66
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref67
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref67
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref67
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref68
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref68
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref68
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref69
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref69
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref69
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref69
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref70
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref70
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref71
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref71
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref71
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref72
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref72
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref72
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref73
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref73
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref73
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref73
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref73
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref73
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref73
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref74
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref74
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref74
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref75
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref75
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref76
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref76
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref76
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref77
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref77
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref78
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref78
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref79
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref79
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref79
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref79
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref79
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref80
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref80
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref80
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref81
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref81
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref81
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref82
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref82
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref83
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref83
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref83
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref84
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref84
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref84
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref84
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref84
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref84
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref85
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref85
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref86
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref86
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref86
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref86
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref87
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref87
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref87
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref87
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref88
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref88
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref88
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref89
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref89
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref89
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref90
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref90
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref91
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref91
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref91
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref91
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref92
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref92
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref92
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref93
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref93
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref93
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref93
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref95
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref95
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref95
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref94
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref94
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref94
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref94
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref96
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref97
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref97
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref97
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref98
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref98
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref99
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref99
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref99
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref99
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref99
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref100
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref100
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref100
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref100
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref101
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref101
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref101
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref101
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref102
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref102
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref102
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref102
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref103
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref103
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref103
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref104
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref104
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref105
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref105
http://refhub.elsevier.com/S0959-6526(21)00756-3/sref105

	An empirical analysis of applications of artificial intelligence algorithms in wind power technology innovation during 1980 ...
	1. Introduction
	2. Literature review
	2.1. The concept of artificial intelligence
	2.1.1. The evolution of artificial intelligence
	2.1.1.1. [1960–1980] 1st AI boom
	2.1.1.2. [1980–2000] 2nd AI boom and AI winter
	2.1.1.3. [2000–2010] statistics based machine learning and development of distributed computing
	2.1.1.4. [2011-Present] emergence of deep learning and the prevalence of AI and digital transformation

	2.1.2. Machine learning
	2.1.3. Deep learning

	2.2. The application of artificial intelligence in wind power technology

	3. Methodology
	3.1. Patent data collection
	3.2. Preprocessing
	3.3. Text mining analysis
	3.4. IPC co-occurrence network analysis

	4. Results and discussions
	4.1. Descriptive results
	4.2. The results of text mining analysis with t-SNE algorithm
	4.3. IPC co-occurrence network analysis

	5. Summary
	6. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


