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A B S T R A C T

Excessive price fluctuations would affect the effectiveness of Emission Trading Scheme (ETS) and low-carbon
investment. Therefore, the drivers of carbon prices need to be disentangled to analyze the price formation
process, which is important for both policy makers and investors. By applying the Ensemble Empirical Mode
Decomposition (EEMD) method, we decompose the historical carbon price data of the five ETS pilots in China
into five groups of the independent Intrinsic Mode Function (IMF) sequences and the residue, respectively. Then,
the IMFs and the residue in each pilot are reconstructed into a high frequency component, a low frequency
component and a trend component, thus disentangling the effects of short-term market fluctuations, significant
events, and the long-term trend. The main findings are as follows. First, the IMF with a period around one year is
the most influential factor, which reflects that pilots are characterized by the yearly cycle. Second, significant
events have greater impacts than short-term market fluctuations, and are the dominant driver in Shanghai and
Beijing pilots. Third, the long-term trend plays a decisive role in Shenzhen, Guangdong and Hubei pilots. The
price stabilization mechanism is critical to avoid a severe imbalance between demand and supply in the long run.

1. Introduction

As the world's largest greenhouse gas emitter, China has demon-
strated its determination to tackle climate change. In June 2015, China
submitted its Intended Nationally Determined Contribution, proposing
the target of reducing carbon intensity by 60 to 65% below 2005 levels
by 2030 and peaking its CO2 emissions around 2030. The post-2020
commitment signals a reinforced intention for climate change mitiga-
tion and adaptation. To achieve these targets effectively, China has
regarded ETS as the “flagship” policy to lower carbon emission. Seven
ETS pilots have come to operation since 2013 to gain experiences,
covering Beijing, Tianjin, Shanghai, Chongqing, Shenzhen, Hubei, and
Guangdong. China announced the official launch of a national ETS in
December 2017.

ETS creates a price mechanism for carbon emissions, which serves
as leverage for optimally allocating a certain quantity of allowance
among emitters. In the short run, the carbon price provides the in-
centive for covered enterprises to reduce emissions cost-effectively. In

the long term, these enterprises would incorporate carbon prices into
their long-term investment decisions, stimulating clean technology
development and market innovation. To sum up, the carbon price plays
a significant role in the carbon ETS and low-carbon economy. Robust
and persistent carbon price would ensure the transition from a carbon-
intensive economy to a low-carbon one. However, the experiences show
that ETS may be under the risk of frequent price fluctuations, which can
be observed in EU ETS (Convery et al., 2008; Zhang and Wei, 2010). As
indicated in Fig. 1, China ETS pilots have yielded different carbon
prices, and some pilots have also witnessed dramatic price changes.

The carbon price is affected by various factors, including market
power, institutional design, energy prices, etc. These factors contribute
to shaping price sequences with different duration, amplitude and fre-
quency. Market power and speculation occur at a high frequency in
ETS, and may cause the short-term fluctuations of carbon price
(Hintermann, 2010). Regulatory events, such as allowance allocation,
trading rules, offset mechanism and intertemporal banking, can cause
sharp price fluctuations with long duration (Alberola and Chevallier,
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2009; Chevallier, 2009; Song et al., 2018). The decisions regarding total
allowance would substantially impact the carbon price, even lead to
extreme price fluctuations (Benz and Trück, 2009; Creti et al., 2012).
Energy prices may significantly affect allowance prices depending on
the market structure of energy (Aatola et al., 2013; Ji et al., 2018;
Kanamura, 2016). The impacts of different energy prices are incon-
sistent and would change with time (Fan and Todorova, 2017;
Hammoudeh et al., 2015). In addition, the long-term evolution of the
carbon price is proven to be greatly driven by the macroeconomic
growth (Chevallier, 2011; Feng et al., 2011; Koch et al., 2014). As the
drivers are superimposed onto each other simultaneously, carbon price
signals are considered as the integration of different sequences. Thus, in
order to analyze the price formation process, it is necessary to de-
compose carbon prices and study different types of drivers.

Wide-ranged fluctuations have triggered a political debate on
whether and how regulators should engage in stabilizing carbon prices.
Under ideal conditions, the cap will be achieved at least cost if no
regulatory intervention occurs. However, market participants en-
counter uncertainties beyond what a social planner faces (Salant,
2016). An increasing body of literature argues that price stabilization
mechanisms should be established, because it's hard for ETS itself to
response to all shocks (Ellerman et al., 2015; Grosjean et al., 2016).
Many measures have been proposed to stabilize carbon prices, such as
price floors in RGGI and Market Stability Reserve (MSR) in EU ETS.
There are also different views: critics warry that regulatory events ac-
count for the existence and timing of price jumps in the EU ETS (Holt
and Shobe, 2016; Perino and Willner, 2016); supporters argue that an
ETS with MSR has lower price variation and lower expected abatement
costs (Fell, 2016; Kollenberg and Taschini, 2016). The core of this de-
bate lies in how regulatory events and market fundamentals influence
carbon prices. This calls for disentangling the effects of short-term
market fluctuations, significant events and long-term trend.

Therefore, this study decomposes carbon prices in China's ETS pilots
into a group of sequences from high to low frequency by applying the
EEMD method. Then the study reconstructs high frequency component,
low frequency component and trend component, which correspond to
short-term market fluctuations, significant events and long-term trend
respectively. The contributions of this study are twofold. First, it gains a
deeper understanding of formation mechanism of carbon prices by
disentangling the drivers of carbon prices. Comparisons are made
among those drivers in five ETS pilots to find the rule of carbon price
fluctuations. Second, it explores the effects of short-term market fluc-
tuations, significant events and long-term trend. This will facilitate
proper valuation of price stabilization mechanisms and assist regulator
to develop appropriate policies.

The remainder of the paper is organized as follows. Section 2 re-
views the methodologies applied in the literature. Section 3 details the
EEMD approach and the data. Section 4 presents the results and ana-
lysis. Section 5 further studies three types of factors respectively.
Section 6 draws conclusion.

2. Literature review

Different econometric approaches have been adopted to study the
carbon price and its influencing factors.

The common methods adopted in the literature are financial
econometric techniques, such as Generalized Auto Regressive
Conditional Heteroscedasticity (GARCH), Vector Auto Regression
(VAR) and Vector Error Correction Models (VECM). GARCH models can
capture the stylized facts including clustering effects and asymmetric
leverage effects, hence they are broadly employed to depict carbon
price dynamics (Benschopa and López Cabreraa, 2014; Benz and Trück,
2009; Deeney et al., 2016; Paolella and Taschini, 2008). By extending
the univariate framework of autoregressive process to a multivariate
setting, VAR models are adopted to address the interactive relationship
among the carbon price and its fundamentals (Arouri et al., 2012; Tan
and Wang, 2017; Zeng et al., 2017). When applied to nonstationary
time series, VECM models perform better to avoid risk of spurious re-
gressions and loss of important long-run information (Chevallier, 2012;
Creti et al., 2012; Freitas and Silva, 2013). To endogenize the time-
changing influences caused by structural breaks, regime-switching
models are introduced to provide a better in-sample fit by distin-
guishing different states of the data (Lutz et al., 2013; Segnon et al.,
2017). In addition, the event study approach is recently applied to
provide a detailed description of the policy impact on carbon prices
(Fan et al., 2017; Song et al., 2018).

Another branch to study financial prices is the trend–cycle decom-
position methods. Since financial prices are often regarded as the su-
perposition of different sequences, decomposition methods have been
proposed in the economic or financial series analysis to unveil the
temporal characteristics and driving forces of the economic fluctua-
tions. There are two main types for the trend–cycle decomposition
approaches, the model-based methods and non-model-based ones. One
commonly used model-based approach is the BN decomposition method
under the hypothesis that the trend and cyclical term are subject to a
certain pattern (Beveridge and Nelson, 1981). The BN method decom-
poses the economic series into a permanent trend component which
contains the effect of persistent factors, and a stationary cyclical com-
ponent with zero mean which reflects the influence of transitory fac-
tors. The BN method has been continuously improved and used in the
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Fig. 1. Carbon prices of 5 China's ETS pilots.
Data source: The carbon price data is collected from the official website of each ETS pilot.
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economic series decomposition and business cycle analysis (Balcilar
et al., 2017; Kim, 2008; Murasawa, 2015; Narayan and Thuraisamy,
2013). The non-model-based methods include HP filter, Band-pass
filter, Wavelets etc., among which the most popular is HP filter (Chen
and Reeves, 2012; Grant and Chan, 2017; He et al., 2013; Lisi and Nan,
2014; Wang et al., 2017). The HP filter does not specify the model that
trend term and the cyclical component should conform, but it requires
that the trend should meet a certain smoothness (the λ parameter), thus
isolating the series components of interest.

Due to a short operation time and frequent policy adjustments, ETS
pilots in China are characterized by poor data quality. The financial
econometric techniques may not be appropriate to portray these carbon
prices. Besides, those methods lack economic meaning and cannot ex-
plain the inner driving forces that move carbon prices (Feng et al.,
2011). The event study method only focuses on the external impact of
major events and cannot inspect the influence of short-term market
fluctuations and long-term trend. As for trend–cycle decomposition
methods, the BN decomposition method assumes that the trend and
cyclical component are related, so the influence of different factors on
the economic sequence cannot be completely separated. Furthermore,
the limitation of HP filter is the prior specification of λ which would
greatly affect the cycle estimation (Maravall and del Río, 2007).

The EEMD approach is a more suitable method and could fill the gap
mentioned above. Compared to financial econometric techniques, the
EEMD approach has no requirement on linearity and stability of data,
thus applying well to the poor data quality in China's ETS pilots. The
method can also solve the dilemma between the difficulties in modeling
and the lack of economic implications (Zhu et al., 2015). Relative to the
BN method, EEMD can decompose the original price into a series of
independent sequences and a residue, thus distinguishing the effects of
different influencing factors. In contrast with non-model-based de-
composition methods, EEMD could realize decomposition according to
the local characteristics of the original series. In view of these ad-
vantages, the EEMD method has been widely used in the literature of
price changes and forecasting, like crude oil prices (Jianwei et al., 2017;
Yu et al., 2016), stock prices (Xu et al., 2016; Zhang et al., 2017), and
gold prices (Ming et al., 2016; Xian et al., 2016) etc. Therefore, we
adopt the EEMD approach to disentangle the different drivers of carbon
prices in China's ETS pilots.

3. Method and data

3.1. Ensemble empirical mode decomposition

The EEMD approach is an improved algorithm of Empirical Mode
Decomposition (EMD). The EMD method can decompose the data
adaptively and completely without prior processing of the original se-
quence (Huang et al., 1998). The decomposition should satisfy two
conditions: first, all IMFs have the same number of extrema and zero-
crossings (difference does not exceed 1); second, the IMF is axially
symmetric with zero mean to ensure that it is a periodic function with a
zero-mean value. The calculation steps are as follows.

1) Confirm all maximum and minimum values of the time series z(t);
use the cubic spline interpolation function to give the upper and lower
envelopes eupper(t) and elower(t); and calculate mean m(t) of the upper
and lower envelopes:

= +m t e t e t( ) ( ( ) ( ))/2upper lower (1)

2) Separate the mean value from the time series and define the
difference with the original sequence as d(t):

= −d t z t m t( ) ( ) ( ) (2)

3) Treat d(t) as a new z(t) if d(t) does not meet the IMF's conditions
and repeat the above steps until the above two requirements are met,
then define it as the IMFi and express as fi(t) to separate from z(t) and
obtain a new residue ri(t):

= −r t z t f t( ) ( ) ( )i i (3)

4) Repeat the above steps until the stopping criteria is met to obtain
the nth residue1:

= −−r t r t f t( ) ( ) ( )n n n1 (4)

Finally, the IMF component can be expressed as follows:

∑= +
=

z t f t r t( ) ( ) ( )
i

n
i n1 (5)

However, the EMD suffers from mode-mixing problem which can be
illustrated as some fast-intermittent signals riding on a slow-oscillating
wave (Shen et al., 2014). The EEMD method is proposed to overcome
this drawback, by adding white noise to the original sequence to ensure
the separation of real signal sequence (Wu and Huang, 2004). The steps
are as below:

1) Add a white noise sequence to the original, which meets the
following condition:

=ε ε
Nn (6)

where N is the number of integrations, ε and εn are white noise am-
plitude and the final standard deviation of error, respectively;

2) Decompose the synthesized sequence into the IMFs in a similar
way to EMD;

3) Repeat the above steps, take a different white noise sequence
each time, and select the corresponding IMF's mean value as the final
IMF sequence, fi(t).

3.2. Fine-to-coarse reconstruction

The effects of various drivers are included in the group of in-
dependent IMFs and the final residue r(t). According to the features of
frequency, duration and amplitude, these IMFs can be divided into
several categories to deeply understand different types of drivers. We
reconstruct the IMFs and the residue into high frequency component,
low frequency component and trend component by the fine-to-coarse
reconstruction algorithm. Procedure is as followed.

1) Calculate the sum of the superposition sequences from f1(t) to fi(t)
and the mean value fi ;

2) Identify IMF1 to IMFi−1 as high frequency IMFs, if fi significantly
deviates from zero by conducting t-test, while the rest IMFs as low
frequency IMFs.

3) Define the sum of all high frequency IMFs as the high frequency
component, the sum of all low frequency IMFs as the low frequency
component, and the residual r(t) as the trend component.

The three components correspond to the effects of short-term
market fluctuations, significant events and long-term trend. Each
component has its own distinct characteristics, and is interpreted in line
with its time scale and fluctuant feature:

First, the high frequency component (HFC) has shorter period and
forms fast oscillation around zero mean. It represents the effects of
short-term fluctuations in the carbon ETS caused by market power,
market psychology and speculative behavior, etc. The occurrence of
these factors is frequent, while their impacts usually last for a short
time. Their effects are contained in the high frequency component with
short duration and narrow amplitude.

Second, the low frequency component (LFC) has longer period and
larger amplitude, and gradually falls back to zero when the influence
fades. It reflects the impact of significant events on the carbon price,
including regulation adjustments, information disclosure, international
politics and negotiations, etc. These events occur at a low frequency,

1 The stopping criteria is proposed by Huang et al. (2003): the component
f t( )i or the residue r t( ) becomes so small that it is less than the predetermined
value of a substantial consequence; or the residue r t( ) becomes a monotonic
function which no more IMFs can be extracted.

J. Xu et al. Technological Forecasting & Social Change 139 (2019) 1–9

3



but their influences are great and long.
Third, the trend component (TC) shows a long-term slow and

smooth change, depicting the trend evolution of the original carbon
price. It is determined by the overall demand and supply of allowances
in the long run, implying the influence of factors such as macro-
economic growth and energy prices from the demand side, and allo-
cation plan and related price stabilization mechanism from the supply
side.

3.3. Data

The main challenge in studying China's ETS pilots is the large
number of zero trading volume. To ensure meaningful conclusions, the
study focus on five China's ETS pilots, including Shenzhen, Shanghai,
Beijing, Guangdong and Hubei. The two remain pilots, Tianjin and
Chongqing are excluded due to poor data availability in both pilots.
And we adopt the average carbon price which is defined as the ratio of
daily transaction value to daily trading volume of allowances. The
carbon price data is collected from the official website of each ETS pilot
covering the period from the launching time of each pilot to May 31,
2017.

4. Empirical analysis

4.1. Decomposition

Table 1 shows the decomposition results of five ETS pilots by EEMD,
including average period, variance ratio and IMF's frequency identifi-
cation. Variance ratio can be used to evaluate the relative contribution
of each IMF to the overall carbon price, because the IMFs separated
from the original price are mutually independent.

First, the average period and variance ratio of the IMFs vary over
time. High frequency IMFs exhibit short duration and relatively weak
impact; while low frequency IMFs show longer duration and stronger
influence. The average periods of high frequency IMFs are mostly under
33 days, and the effects from these short-term factors are weak with the
variance ratios mostly below 5%. The low frequency IMFs usually last
from two weeks to more than one year, and make larger contributions
to carbon prices with obvious higher variance ratios.

Second, the IMF with a period around one year (i.e. IMF7) presents
relatively higher variance ratios in five pilots, implying that ETS pilots
are characterized by the yearly cycle. It is because the ETS pilots are
based on the annual cycle design, including allowance allocation,
compliance, measurement, reporting and verification (MRV) process,
etc. Only in Guangdong pilot, the most influential sequence is IMF6
with a period of 111 days. It may be related to its periodical auction

regulation, hence the three-month factor presents a higher impact.
Third, most pilots have 4 high frequency IMFs and 4 low frequency

IMFs, while Shenzhen pilot has 2 high frequency IMFs and 6 low fre-
quency IMFs. This may be due to the frequent regulation adjustment
especially the trading rules changes in Shenzhen, resulting in the
shorter periods of low frequency IMFs.

4.2. Reconstruction

The high and low frequency IMFs are added respectively to get HFC
and LFC of the carbon price in each pilot. Fig. 2 takes Shenzhen ETS
pilot as an example to plot the line graph of three components and
original carbon price. Consistent with the theoretical expectation, HFC
forms fast oscillation around zero mean, LFC shows similar amplitude
with carbon price, and original price moves around TC in the long run.
The graphs of other four pilots present the same feature.

Table 2 provides the variance ratios and Pearson correlation coef-
ficients of HFCs, LFCs and TCs. The IMFs are mutually independent, so
are the three components. Therefore, variance ratio can be used to
evaluate the relative contribution of each component to the overall
carbon price. Pearson correlation coefficient measures the direction and
strength of a linear correlation between two random variables. The
positive sign indicates a positive correlation and greater absolute value
means higher degree of the correlation. It's generally assumed that a
coefficient value greater than 0.4 signifies an above-medium correla-
tion.

First, significant events have much greater impacts on the carbon
price than short-term market fluctuations in all five pilots. According to
Table 2, the variance ratios of LFCs are obviously higher than those of
HFCs, which implies that the significant events explain a much larger
proportion of carbon prices. In addition, the Pearson correlation coef-
ficients of LFCs are all significant at 1% level, and reach a high level of
above 0.6 except Guangdong. The obvious higher coefficients also in-
dicate a closer correlation between significant events and carbon prices.

Second, the significant events are the dominant driving force of
carbon prices in Shanghai and Beijing pilots. Both pilots have changed
the allocation plans and total caps to a large extent, hence making
profound influences on the carbon prices. Especially in Shanghai pilot,
the allowance allocation period has been altered from three years to
one year. The finding is consistent with that of Song et al. (2018), which
reveals that carbon policies are the main driver of carbon prices rather
than the fundamentals of supply and demand in Shanghai pilot.

Third, the long-term trend plays a decisive role in Shenzhen,
Guangdong and Hubei pilots. The variance ratios of TCs in those pilots
are more than 60%, and the Pearson correlation coefficients are all
higher than 0.8. It implies that the most influential factor is the long-

Table 1
IMF statistics and frequency identification of five pilots.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Shenzhen Average period (day) 3.06 7.08 14.49 26.85 60.87 182.6 304.33 456.5
Variance ratio 1.91% 1.10% 3.60% 2.82% 2.37% 5.34% 10.88% 0.97%
Frequency identification HF HF LF LF LF LF LF LF

Shanghai Average period (day) 3.21 6.78 15.74 33.36 69.5 119.14 417 834
Variance ratio 0.22% 0.22% 0.24% 0.61% 2.40% 2.45% 70.90% 1.68%
Frequency identification HF HF HF HF LF LF LF LF

Beijing Average period (day) 3.27 7.63 14.21 32.96 82.4 206 412 824
Variance ratio 4.36% 3.07% 3.80% 5.93% 9.64% 10.41% 49.98% 1.90%
Frequency identification HF HF HF HF LF LF LF LF

Guangdong Average period (day) 3.04 7.35 14.98 29.96 77.9 111.29 389.5 779
Variance ratio 0.25% 0.19% 0.77% 0.53% 0.98% 2.84% 1.43% 1.27%
Frequency identification HF HF HF HF LF LF LF LF

Hubei Average period (day) 3.25 7.13 15.4 32.08 59.23 192.5 385 770
Variance ratio 0.70% 0.45% 0.96% 0.98% 1.55% 14.11% 15.74% 0.25%
Frequency identification HF HF HF HF LF LF LF LF

Note: The average period is defined as the value derived from dividing the number of points by the number of peaks for each IMF. The variance ratio is the percentage
of a IMF's variance to the total variance of the IMFs and the residual. HF denotes high frequency IMF, while LF is low frequency IMF.
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term supply and demand structure, of which the effect is difficult to be
eliminated soon for the carbon market itself.

5. Disentanglement and discussions

To further study the impacts of three components respectively, a
horizontal comparison of each component is then made among five
pilots.

5.1. The impact of short-term market fluctuations

From the comparison of HFCs' line graph in Fig. 3, we have the
following findings.

First, the effects of HFCs are usually within 15 RMB/ton of CO2,
while that of Hubei is below 5 RMB/ton of CO2. Hubei has proposed a
set of price stabilization mechanism, so the carbon price has been re-
latively stable even with largest trading volume.

Second, the HFC in Shenzhen pilot is always frequent and violent.
Carbon prices of Shenzhen pilot frequently reaches price limits,2 which
indicates that the pilot may exist serious speculative behavior. Ren and
Lo (2017) also finds that there are significant fluctuations and ex-
cessively high kurtosis in trading volume of Shenzhen pilot.

Third, HFCs have higher frequencies and amplitudes in the initial
stage and slow down gradually in Shanghai and Guangdong pilots. This
suggests that the impact of short-term market fluctuations on carbon
prices is decreasing with increasing experience, which shows a learning
effect in these pilots.

5.2. The impact of significant events

The comparison of LFCs among five pilots is graphed in Fig. 4. It can
be found that the ups and downs of the LFCs usually correspond to the
time when external event occurs.

First, the amplitudes of LFCs are generally less than 50 RMB/ton of
CO2, significantly higher than those of HFCs. It suggests that carbon
market is highly sensitive to shocks from significant events. Different
pilots show divergence on the LFCs' amplitudes, with up to 50 RMB/ton
of CO2 in Shenzhen, 15-25 RMB/ton of CO2 in Shanghai, Beijing and
Guangdong pilots and 7 RMB/ton of CO2 in Hubei pilot.

Second, the frequencies of LFCs are low in all pilots except
Shenzhen. This may be due to its high frequency in policy adjustments
and trading rule changes in Shenzhen pilot. It experienced 9 times of
policy adjustments and 6 times of trading rules changes in the sample
period.3

Third, the sources of external shocks are complex and multifaceted.
The regulation adjustments are the main source of significant events in
the pilot markets, and some cases are presented in Fig. 4. China's ETS
pilots are still in the early stage, and the authorities often adjust reg-
ulations, such as coverage, allowance auction, and offset mechanism.
On the one hand, these adjustments may improve the market me-
chanism, while on the other hand, they can also cause sharp fluctua-
tions in carbon prices.

5.3. The impact of long-term trend

Fig. 5 depicts the trend curve of each pilot which slowly varies
around the long-term average. The trajectory of trend component
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Fig. 2. Carbon price, high frequency component, low frequency component and trend component of Shenzhen pilot.
Note: HFC, LFC and TC denote the high frequency component, the low frequency component and trend component, respectively.

Table 2
Variance ratios and Pearson correlation coefficients of three components in five pilots.

ETS pilots High frequency component Low frequency component Trend component

Variance ratio Pearson correlation coefficient Variance ratio Pearson correlation coefficient Variance ratio Pearson correlation coefficient

Shenzhen 3.27% 0.17⁎⁎⁎ 31.59% 0.65⁎⁎⁎ 65.14% 0.84⁎⁎⁎

Shanghai 1.34% 0.16⁎⁎⁎ 82.19% 0.89⁎⁎⁎ 16.48% 0.07⁎⁎⁎

Beijing 20.94% 0.47⁎⁎⁎ 68.93% 0.84⁎⁎⁎ 10.13% 0.38⁎⁎⁎

Guangdong 2.59% 0.18⁎⁎⁎ 9.41% 0.27⁎⁎⁎ 87.99% 0.93⁎⁎⁎

Hubei 4.56% 0.20⁎⁎⁎ 31.85% 0.66⁎⁎⁎ 63.60% 0.83⁎⁎⁎

Note: ⁎ means a significant correlation in the 0.10 level (bilateral); ⁎⁎ means a significant correlation in the 0.05 level (bilateral); ⁎⁎⁎ means a significant correlation in
the 0.01 level (bilateral). The variance ratio is the relative variance ratio, i.e., the percentage of a component's variance to the total variance of the three components.

2 Shenzhen guards against both highs and lows, and limits price fluctuations
to no more than 10% per day.

3 The Statistical data of policy adjustments and trading rule changes are de-
rived from the official website of China Emissions Exchange in Shenzhen, col-
lected and collated by the author. The website is: http://www.cerx.cn/en/.
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mainly reflects the long-term supply and demand structure of allow-
ance. The rising trend curve suggests that the demand for allowance
exceeds the supply; the declined curve refers to a surplus of allowance;
and the smooth curve discloses a relative balance of supply-demand
structure. By comparing the trend with the original carbon price, it can
be found that the trend is consistent with the evolution of carbon prices
in the long run.

First, the trend curves of Shenzhen and Guangdong pilots gradually
stabilize after a sharp decline. As the first ETS pilot launched in China,
the initial price of Shenzhen pilot was rather high due to the speculative
behavior and information asymmetry. The price trend declined rapidly
with the constant disclosure of market information, and gradually sta-
bilized when Shenzhen took the ex-post adjustment on firm-level al-
lowances.4 Guangdong pilot auctioned 3% of allowances and set a re-
serve price of 60 RMB/ton of CO2 at the beginning. Nevertheless, the
loose cap and cancelation of price floor caused the sharp fall of carbon
prices. The price trend of Guangdong rebounded by increasing the
auction proportion and tightening the cap.5

Second, the trend curve of Shanghai shows a “U” type of first des-
cending slowly and then rising greatly. Shanghai pilot issued free al-
lowances of three years in its first stage (2013–2015),6 resulting in a
surplus of allowance and a decline of trend curve. In 2016, Shanghai

adjusted its allowance allocation plan and tightened free allowances for
some covered industries. As a result, the supply-demand structure
started to reverse, and the trend curve went upward obviously.

Third, the trend curves of Hubei and Beijing pilots are relatively
stable, indicating the relative balance of supply-demand structure. This
may be due to a set of price stabilization mechanisms. Beijing pilot
implements a strict price limit with a clear corridor of 20–150 RMB/ton
of CO2,

7 and related allowances auction and buy-back mechanism.
Hubei pilot sets up a systematic carbon price stabilization mechanism,
including allowance reserve, allowance automatic cancelation, ex-post
adjustment and price limit. Therefore, their trend curves are relatively
stable in the whole sample period.

In conclusion, the long-term trend of carbon prices mainly relies on
the demand side factors such as macroeconomic growth,8 and the
supply side factors including allocation plan and the stabilization me-
chanism. To avoid a severe imbalance between demand and supply of
allowances, attention should be paid on carbon price stabilization
mechanism.

6. Conclusions

This paper decomposes the carbon price data of five ETS pilots in
China by applying the EEMD approach. And then, it disentangles the
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Fig. 3. High frequency components of five pilots.

4 See the Notice of Shenzhen Development and Reform Committees (DRC) on
the Implementation of ETS in 2016.

5 See the Notice of Guangdong DRC on Allowances Allocation Measures in
2016.

6 See the Notice of Shanghai DRC on Allowances Allocation and Management
Measures in 2013–2015.

7 See the Notice of Beijing DRC on Open Market Operations Management
Measures in 2014.

8 Energy prices have been proven of non-significant correlation with carbon
prices in china's ETS pilots, and only in Hubei pilot carbon prices are weakly
linked to international natural gas prices (Fan and Todorova, 2017).
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effects of short-term market fluctuations, significant events and the
long-term trend. The main conclusions are as follows.

First, the average period and variance ratio of the IMFs vary over
time. The IMF with a period around one year presents relatively higher
variance ratios in five pilots, which reflects that pilots are characterized
by the yearly cycle. In Guangdong pilot, the most influential low fre-
quency IMF is the three-month factor which is related to its periodical
auction regulation.

Second, short -term market fluctuations only exert limited influ-
ences on carbon prices, and the effects are usually within 15 RMB/ton
of CO2. The short-term fluctuations are violent in Shenzhen pilot, in-
dicating that the pilot may exist serious speculative behavior. The im-
pacts of short-term market fluctuations are decreasing in Shanghai and
Guangdong pilots with increasing experience.

Third, significant events have greater impacts than short-term
market fluctuations, and are the dominant driving force in Shanghai
and Beijing pilots. The influences vary for five pilots, with up to 50
RMB/ton of CO2 in Shenzhen, 15-25 RMB/ton of CO2 in Shanghai,
Beijing and Guangdong, and 7 RMB/ton of CO2 in Hubei pilot. The
regulation adjustments are the main source of significant events in the
pilot markets.

Fourth, the long-term trend plays a decisive role in Shenzhen,
Guangdong and Hubei pilots. The trend curves rely on the demand side
factors such as macroeconomic growth, and the supply side factors
including allocation plan and the stabilization mechanism. The price
stabilization mechanism is critical to avoid a severe imbalance between
demand and supply.

In light of the above findings, this paper suggests that the policy
makers need to analyze the drivers of price fluctuations and take
measures accordingly. For short-term market fluctuations, market plays
a major role and government should only take precautions against over-
speculation. For significant events, policy adjustments themselves are
the major source, and may increase carbon price fluctuations.
Therefore, government should consider the impact of policy adjust-
ments, and avoid excessive influence on carbon prices. As to the long-
term trend, the government should deliberately determine the cap and
set up necessary stabilization mechanism to maintain relative scarcity
of carbon allowance.
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